人工智能|预训练大模型——基于Ollama+AnythingLLM搭建本地私有知识库系统

一、检索增强生成简介     

1. 传统LLM应用的弊端       

自OpenAI革命性的ChatGPT发布以来,在人工智能领域,特别是大型语言模型(Large Language Model,LLM)的能力进化速度之快令人惊叹,大模型浪潮已经席卷了几乎各行业。通过利用LLM的强大功能来解决复杂任务、增强自然语言理解和生成类人文本,从而可能颠覆各个领域。

       但是当涉及到专业场景或行业细分领域时,通用的基础大模型基本无法满足我们的实际业务需求,主要有以下几方面原因:

  • 知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问)的训练集基本都是构建于网络公开的数据,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。
  • 幻觉问题:所有的AI模型的底层原理都是基于数学概率,其模型输出实质上是一系列数值运算,大模型也不例外,所以它有时候会一本正经地胡说八道,尤其是在大模型自身不具备某一方面的知识或不擅长的场景。而这种幻觉问题的区分是比较困难的,因为它要求使用者自身具备相应领域的知识。
  • 数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。这也导致完全依赖通用大模型自身能力的应用方案不得不在数据安全和效果方面进行取舍。既要保证安全,又要借助AI能力,那么最好的方式就是把数据全部放在本地,企业数据的业务计算全部在本地完成。

        其实问题还有很多,包括tokens的限制,虽然这个长期来看不是问题,各LLM供应商的tokens数量限制肯定会越来越大。但是,费用也许就是另外一个需要考虑的问题了。

2.  检索增强生成原理     

检索增强生成(Retrieval-Augmented Generation,RAG),是一种使用外部知识库来补充大语言模型的上下文并生成响应的技术。 RAG结合了LLM中的参数化知识和非参数化外部知识,缓解了幻觉问题,通过检索技术识别及时的信息,并增强了响应的准确性。 此外,通过引用来源,RAG增加了模型输出的透明度和用户信任度。 RAG还可以通过索引相关文本语料库进行定制以适应特定领域。

       RAG的架构如图所示,简单来讲,RAG就是通过检索获取相关的知识并将其融入Prompt,让大模型能够参考相应的知识从而给出合理回答。因此,可以将RAG的核心理解为“检索+生成”,前者主要是利用向量数据库的高效存储和检索能力,召回目标知识;后者则是利用大模型和Prompt工程,将召回的知识合理利用,生成目标答案。

<
### 构建本地私有知识库系统的概述 构建一个高效的本地私有知识库系统能够极大地提升个人或团队的信息管理和检索效率。通过利用OllamaAnythingLLM,在MacOS平台上可以实现这一目标[^1]。 ### 准备工作环境 为了确保软件安装顺利,需先确认操作系统版本兼容性并更新至最新状态。对于终端操作不熟悉的用户建议提前学习基础命令行工具使用方法[^2]。 ### 安装配置过程 #### 修改Shell配置文件 针对采用Zsh作为默认shell的MacOS系统(通常为Catalina及以上版本),可以通过编辑`~/.zshrc`来设置环境变量;而对于其他情况,则可能需要修改`/etc/profile`文件。具体做法是在上述任一文件的最后一行加入必要的路径声明或其他初始化指令[^3]: ```bash export PATH=$PATH:/path/to/installation/directory ``` > **注意**: `/path/to/installation/directory`应替换为实际安装位置。 #### 获取并部署Ollama 访问官方渠道下载适用于MacOS平台的Ollama安装包,并按照指引完成整个流程。这一步骤完成后即可获得强大的索引创建能力以及灵活的数据处理选项。 #### 配置AnythingLLM服务端 同样地,从官方网站获取对应于当前计算机架构的最佳匹配版AnythingLLM压缩包解压后放置到合适目录下。接着参照文档说明调整参数设定以适应特定需求场景下的性能表现优化。 ### 测试验证功能正常与否 当所有组件都已正确安置完毕之后,启动相关服务并通过浏览器或者其他客户端尝试连接测试接口响应速度及准确性。如果一切运作良好则表明已经成功建立了属于自己的个性化智能体/知识库解决方案。 ### 后续维护与发展规划 随着数据量的增长和技术进步的步伐加快,定期审视现有结构是否存在瓶颈成为必要之举。适时引入新技术手段改进原有框架不失为一种明智的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博士僧小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值