python进阶高级技能:Python退火算法在高次方程的应用

本文介绍Python退火算法在解决高次方程中的应用,通过三种解法对比,展示了退火算法如何找到一元四次方程的近似最优解,并探讨了算法的核心思想。
摘要由CSDN通过智能技术生成

@本文来源于公众号:csdn2299,喜欢可以关注公众号 程序员学府
退火算法就是钢铁在淬炼过程中失温而成稳定态时的过程,热力学上温度(内能)越高原子态越不稳定。这篇文章主要介绍了Python退火算法在高次方程的应用,需要的朋友可以参考下

一,简介

退火算法不言而喻,就是钢铁在淬炼过程中失温而成稳定态时的过程,热力学上温度(内能)越高原子态越不稳定,而温度有一个向低温区辐射降温的物理过程,当物质内能不再降低时候该物质原子态逐渐成为稳定有序态,这对我们从随机复杂问题中找出最优解有一定借鉴意义,将这个过程化为算法,具体参见其他资料。

二,计算方程

我们所要计算的方程是f(x) = (x - 2) * (x + 3) * (x + 8) * (x - 9),是一个一元四次方程,我们称为高次方程,当然这个函数的开口是向上的,那么在一个无限长的区间内我们可能找不出最大值点,因此我们尝试在较短区间内解最小值点,我们成为最优解。
解法一:

毫无疑问,数学方法多次求导基本可以解出,但是这个过程较复杂,还容易算错,我就不赘述了,读者有时间自己可以尝试解一下。

解法二:

这个解法就是暴力解决了,我们这里只求解区间[-10,10]上的最优解,直接随机200个点,再除以10(这样可以得到非整数横坐标),再依此计算其纵坐标f(x),min{f(x)}一下,用list的index方法找出最小值对应位置就行了,然后画出图形大致瞄一瞄。

直接贴代码:

import random
import matplotlib.pyplot as plt
list_x = []
# for i in range(1):
#   #print(random.randint(0,100))
#   for i in range(0,100):
#     print("sss",i)
#
#   list_x.append(random.randint(0,100))
for i in range(-100,100):
  list_x.append(i/10)
print("横坐标为:",list_x)
print(len(list_x))
list_y = []
for x in list_x:
  # print(x)
  #y = x*x*x - 60*x*x -4*x +6
  y = (x - 2) * (x + 3) * (x + 8) * (x - 9)
  list_y.append(y)
print("纵坐标为:",list_y)
#经验证,这里算出来的结果6.5和最优解1549都是对的
print("最小值为:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值