使用 NPU 加速 DeepSeek 推理

81c32464cea1e00062a2565bbc748ae9.png

如今,从高校教授到中小学生,从科技工作者到普通百姓,DeepSeek 已成为不可或缺的智能助手,赋能千行百业,推动社会迈向智能化新时代。它的出现不仅是一次技术革新,更是一场深刻的社会变革。

然而,当我们使用在线版大模型时,常常会遇到卡顿的现象。这是由于用户数量庞大,服务器负载过高,导致响应延迟。此外,在线大模型还存在隐私泄露的风险,因为用户数据需要上传至云端进行处理。相比之下,本地大模型展现出显著的优势。它的响应速度更快,且彻底消除了敏感信息上传云端可能带来的泄露风险。

为了亲身体验本地大模型的优势,我们在幽兰本上部署了 DeepSeek 大模型,并分别测试了基于 CPU 和 RKNPU 的两种推理引擎,以对比 NPU 对推理速度的影响。其中,RKNPU 是瑞芯微电子(Rockchip)推出的神经网络处理单元,专为边缘计算和嵌入式 AI 应用设计。它以高效能、低功耗和高集成度为核心特点,能够在资源受限的设备上高效执行 AI 推理任务。正因如此,RKNPU 已成为智能摄像头、无人机、机器人、智能家居等领域的理想选择,广泛应用于实时人脸识别、目标跟踪、语音识别、视觉导航等场景,为智能化应用提供了强大的底层支持。

下面我们来实际体验一下 NPU 推理,看看它的可靠性以及资源消耗情况。我的第一个问题是,请计算10+5的值。AI 的回答稍显啰嗦,但结果是对的,如下图所示:

d6f588588de28773fbb721de3cadae32.png

接下来,我问了一个当下很多人感到困惑的一个问题:你觉得青少年应该学习编程吗?

AI 的回答非常全面,它先对问题进行了分析,然后进行了总结,由于文字太多,这里只列出最后总结的部分:

8c8bf1c1345263f52112a15f1e46c3bd.png

个人认为,这个答案非常客观,既没有过度夸大编程的好处,鼓动所有人都去学习编程,也没有宣扬“编程无用论”,断言程序员已经过时。对于那些仍在犹豫是否让孩子学习编程的家长来说,这或许能提供一个有价值的参考。

那么我们怎么知道这个推理是在使用 NPU 而不是 CPU呢?我运行了一个 top 命令,监控 CPU 的使用情况。当 NPU 在推理时,CPU 的使用情况如下:

7818a7a1252791c703091576813cae5c.png

幽兰本有8个CPU,但在使用NPU推理时,只使用了两个 CPU,可见其大部分使用的是 NPU。

作为对比,我也试验了 CPU 推理。在使用 CPU 推理时,响应速度显著下降,且 CPU 几乎处于满负荷运行状态,系统资源被大量占用,导致整体效率大幅降低。CPU 的使用情况如下:

ea80ada0cb2ec66eef8d93f43432dacb.png

它使用了7.8个 CPU,整个幽兰本的 CPU 差不多完全被它消耗了。

1b732f72e40555b8899f00d15ca1e560.png

针对这些问题,我也咨询了云端的大模型。使用云端大模型时,由于网络传输的延迟,每个问题通常需要等待约10秒左右才能得到回复。相比之下,本地部署的 DeepSeek 则能够实现即时响应,几乎没有任何延迟。特别是在推理过程中,NPU 的表现远超 CPU,不仅推理速度更快,而且 CPU 占用率极低,用户在进行推理的同时,依然可以流畅运行其他程序,完全不受影响。

从以上对比可以看出,本地推理在响应速度上具有显著优势。如果您同时对隐私保护和数据安全有较高要求,本地推理无疑是最佳选择。

不过,需要指出的是,上面测试NPU情况使用的是1.5B参数的模型(B代表十亿),因此在回答一些概念性问题时,其内容的丰富性和深度与云端大模型相比仍有一定差距。然而,如果问题集中在技术领域,两者的表现几乎不相上下,本地推理同样能够提供高质量的回答。

-END-

【盛格塾】

正心诚意,格物致知

人文情怀审视软件,以软件技术改变人生

9164baecb70a9d945da8c615a8510a9e.png

格友公众号

840797391f545e9268977b71e6d703d2.png

盛格塾小程序

扫描上方二维码或在微信中搜索“盛格塾”小程序

可以阅读更多文章和有声读物

往期推荐

格友会讲GPU系列新春开场

本地运行DeepSeek大模型

U-BOOT的本地控制台输出

以物为师:苦寻黑屏背后的元凶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值