【论文阅读|3DGS】CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scene

583541819cfe4e56b2396440c1db318e.png

3cdc5e33303d40f0b5813e797fc6d22c.png

文章链接:https://arxiv.org/pdf/2411.00771 

摘要 

摘要总结

3D高斯绘制(3DGS)的挑战:尽管3DGS在辐射场重建方面取得了突破,但在大规模和复杂场景中,由于其无序性,准确表示场景表面仍然是一个难题。

CityGaussianV2的提出:本文提出了CityGaussianV2,这是一个针对大规模场景重建的新方法,旨在解决几何精度和效率的关键问题

基于2DGS的方法CityGaussianV2基于2DGS,解决了其在收敛速度和可扩展性方面的限制。

技术亮点

  • 分解梯度的密集化和深度回归技术(decomposed-gradient-based densification and depth regression technique:用于消除模糊伪影并加速2DGS的收敛。
  • 伸长滤波器:用于解决2DGS退化导致的高斯计数爆炸问题。
  • 并行训练优化:通过优化CityGaussian管道,实现了存储压缩,减少了训练时间和内存使用,节省了至少25%的训练时间和50%的内存。

实验结果:

实验表明,CityGaussianV2在视觉质量、几何精度以及存储和训练成本之间取得了良好的平衡,证明了其在大规模场景重建中的有效性和实用性。

1 引言 (Introduction)

  • 3D场景重建的重要性:引言部分首先强调了3D场景重建的重要性,以及其在照片级真实感渲染和几何重建上的追求。
  • 3DGS的优势与局限性:介绍了3DGS作为主导技术的优势,尤其是在训练收敛和渲染效率方面,同时也指出了其在大规模场景中的局限性,特别是在表面表示和下游应用中。
  • 现有方法的挑战:讨论了现有方法在可扩展性和泛化能力方面的挑战,特别是在处理大规模和复杂场景时的问题,如内存需求大、容量限制、高斯模糊和评估协议的不稳定性。

(大规模场景的重建往往还意味着显著的训练开销,要重建1.97km²的区域会产生接近两千万的高斯点,这意味着4.6G的存储以及31.5G的显存开销,以及超过三小时的训练时长)

  • 并行训练和压缩的必要性:强调了实现高效并行训练和压缩的重要性,以及现有方法在训练成本和渲染速度方面的不足。
  • CityGaussianV2的提出:介绍了CityGaussianV2,这是一种新的大规模场景重建方法,它通过采用2DGS作为原语,并结合深度回归和DGD策略来加速重建,同时引入伸长滤波器和并行训练来解决可扩展性问题,并通过向量树量化减少存储需求。
  • 评估协议的改进:提出了一种新的评估协议,通过TnT风格的协议和基于可见性的裁剪体积估计策略,以实现对模型性能的稳定和一致评估。

 In summary, our contributions are four-fold:

优化策略:提出了一个新的优化策略,专门针对大规模场景下的2DGS,以加快其收敛速度,并提高其处理大规模数据的能力。

并行训练流程:开发了一个高度优化的并行训练流程,不仅减少了训练和存储的成本,还确保了实时渲染的性能。

评估协议:建立了一个新的评估协议,适用于大型无界场景,为大规模场景重建提供了一个几何基准。

高斯辐射场的应用:CityGaussianV2是首批在大规模表面重建中应用高斯辐射场的方法之一,实验结果证明了其在几何质量和效率方面达到了最先进的水平。

2.相关工作 (Related Works)

2.1 新视图合成 (Novel View Synthesis)

  1. NeRF技术:NeRF通过MLPs隐式建模场景,是新视角合成的开创性工作。

  2. MipNeRF改进:MipNeRF通过引入抗锯齿技术,减少了渲染过程中的混叠伪影。

  3. 深度监督:利用点云的深度信息加速NeRF模型的收敛,提高训练效率。

  4. 数据结构优化:InstantNGP通过简化数据结构(如八叉树)提升NeRF的训练和渲染速度。

  5. 3D Gaussian Splatting (3DGS):3DGS克服了NeRF在训练效率和渲染速度上的局限,是新视角合成的一个重要进步。

  6. 3DGS的优化:后续工作在抗锯齿、存储成本和高纹理区域欠拟合方面对3DGS进行了改进。

2.2 高斯表面重建 (Surface Reconstruction with Gaussians)

  1. 表面提取技术的发展:为了从无序且离散的3D高斯绘制(3DGS)中提取精确表面,已开发了多种算法,旨在提取明确的表面并规范化平滑度和异常值。

  2. 预训练与优化方法:SuGaR预训练3DGS并与提取的网格结合进行微调,使用泊松重建算法快速提取网格。GSDF和NeuSG则优化3DGS与有符号距离函数以生成精确表面。

  3. 2DGS与GaussianSurfels:2DGS和GaussianSurfels通过折叠3D高斯原语的一个维度来避免模糊的深度估计,并确保表面平滑。

  4. TrimGS与GS2Mesh:TrimGS提供了新的每个高斯贡献定义来去除不准确的几何结构。GS2Mesh作为一种后处理技术,直接从3DGS导出网格。

  5. GOF与RaDeGS:GOF专注于无界场景,利用基于光线追踪的体积渲染和行进四面体算法提取网格。RaDeGS新定义了光线与高斯的交点,并导出曲面和深度分布。

  6. 扩展挑战:这些算法在小场景或单个对象上取得了成功,但在扩展到大规模场景时,面临性能下降、密集化稳定性和训练成本等挑战,这些挑战尚未被充分探索。

2.3 大规模场景重建 (Large-Scale Scene Reconstruction)

  1. 3D重建技术的发展:过去几十年中,从大型图像集合中进行3D重建的技术取得了显著进展。现代算法主要基于NeRF技术,尽管训练和渲染时间较长,但NeRF及其变体在3D场景重建和新视角合成中发挥了关键作用 。

### 3DGS-Enhancer 使用方法概述 对于希望深入了解或使用3DGS-Enhancer的技术人员而言,掌握该工具的具体操作流程至关重要。然而,在提供的参考资料中并未直接提及名为“3DGS-Enhancer”的具体项目或库[^1][^2][^3][^4]。 尽管如此,考虑到3DGS(3D Gaussian Splatting)作为核心技术被广泛应用于多个领域,可以推测所谓的3DGS-Enhancer可能是指增强或改进3D高斯喷射效果的相关技术和实践。为了更好地理解和利用这类技术,建议关注以下几个方面: #### 获取源码资源 如果存在特定于3DGS-Enhancer的开源项目,则可以从官方仓库获取最新版本的源代码。例如,类似的XV3DGS-UEPlugin项目已经托管在一个公开平台上,开发者可以通过访问该项目主页来下载所需文件并查看详细的安装指南。 ```bash git clone https://gitcode.com/gh_mirrors/xv/XV3DGS-UEPlugin.git cd XV3DGS-UEPlugin/ ``` #### 安装依赖环境 确保本地开发环境中已正确设置必要的软件包和库。这通常涉及Python解释器及相关扩展模块的安装,以及其他可能影响程序运行的支持组件。具体的依赖项列表应当由所使用的实际框架决定,并可以在README.md或其他形式的说明文档中找到指导信息。 #### 学习核心概念和技术细节 深入研究有关3D高斯喷射的基础理论及其在不同应用场景下的变体实现方式。ARAH论文介绍了如何构建具有动画功能的角色模型;而关于3DGS-SLAM的研究则探讨了这一技术在即时定位与地图构建中的潜力。 #### 实践案例分析 参考现有成功案例的学习笔记,特别是那些专注于解析复杂系统的内部机制的文章。CSDN博客上有一篇详尽描述了多种基于3DGS SLAM解决方案的实际部署经验分享,这对于理解整个工作流非常有帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值