1、几种简单的凸集
仿射集 | 凸集 |
---|---|
R n R^n Rn空间、 R n R^n Rn空间子空间、直线 | 任意线段、${x_0+\theta v |
2、超平面与半空间
超平面(Hyperplane): { x ∣ a T x = b } \{x|a^T x=b\} {x∣aTx=b} x , a ∈ R n , b ∈ R , a ≠ 0 x,a \in R^n,b \in R, a \neq 0 x,a∈Rn,b∈R,a=0
半空间(Halfspace): { x ∣ a T x ≤ b } \{x|a^T x \leq b\} {x∣aTx≤b} x , a ∈ R n , b ∈ R , a ≠ 0 x,a \in R^n,b \in R, a \neq 0 x,a∈Rn,b∈R,a=0
2、球和椭球
球
球
:
我
们
所
提
的
球
指
欧
几
里
得
球
(
E
u
c
l
i
d
e
a
n
b
a
l
l
)
B
(
x
c
,
r
)
=
{
x
∣
∣
∣
x
−
x
c
∣
∣
2
≤
r
}
=
{
x
∣
(
x
−
x
c
)
T
(
x
−
x
c
)
≤
r
}
球:我们所提的球指欧几里得球(Euclidean \space ball) \\ B(x_c,r)=\{x \mid ||x-x_c||_2 \leq r\} \\ =\{x \mid \sqrt{{(x-x_c)}^T(x-x_c)} \leq r\} \\
球:我们所提的球指欧几里得球(Euclidean ball)B(xc,r)={x∣∣∣x−xc∣∣2≤r}={x∣(x−xc)T(x−xc)≤r}
椭球(ellipsoids)
ε
(
x
c
,
p
)
=
{
x
∣
(
x
−
x
c
)
T
p
−
1
(
x
−
x
c
)
≤
1
}
x
,
x
c
∈
R
n
,
P
∈
S
+
+
n
P
的
奇
异
值
对
应
椭
球
的
半
周
长
,
S
+
+
n
为
n
×
n
的
对
称
正
定
矩
阵
\varepsilon(x_c,p)=\{x \mid (x-x_c)^Tp^{-1}(x-x_c) \leq 1\} \\ x,x_c \in R^n, P \in S^n_{++}\\ P的奇异值对应椭球的半周长,S^n_{++}为 n \times n的对称正定矩阵
ε(xc,p)={x∣(x−xc)Tp−1(x−xc)≤1}x,xc∈Rn,P∈S++nP的奇异值对应椭球的半周长,S++n为n×n的对称正定矩阵
3、多面体和单纯形
多面体(Polyhedron)
P
=
{
x
∣
a
j
T
x
≤
b
j
,
j
=
1
,
.
.
.
,
m
c
j
T
x
=
d
j
,
j
=
1
,
.
.
.
,
r
}
P=\{x \mid a^T_jx \leq b_j,j=1,...,m\\ \space\space\space\space\ c^T_jx=d_j,j=1,...,r\}
P={x∣ajTx≤bj,j=1,...,m cjTx=dj,j=1,...,r}
**单纯形(Simplex)**定义较为复杂
R
n
空
间
中
选
择
v
0
,
.
.
.
,
v
k
共
k
+
1
个
点
,
v
1
−
v
0
,
.
.
.
,
v
k
−
v
0
线
性
无
关
,
则
与
上
述
点
相
关
的
单
纯
形
为
:
C
=
c
o
n
v
{
v
0
,
.
.
.
,
v
k
}
=
{
θ
0
v
0
+
.
.
.
+
θ
k
v
k
,
θ
≥
0
,
1
T
θ
=
1
}
,
θ
∈
R
n
R^n空间中选择v_0,...,v_k共k+1个点,\\ v_1-v_0,...,v_k-v_0线性无关,\\ 则与上述点相关的单纯形为:\\ C=conv\{v_0,...,v_k\}=\{\theta_0 v_0+...+\theta_k v_k, \theta \geq 0, 1^T \theta=1\},\theta \in R^n
Rn空间中选择v0,...,vk共k+1个点,v1−v0,...,vk−v0线性无关,则与上述点相关的单纯形为:C=conv{v0,...,vk}={θ0v0+...+θkvk,θ≥0,1Tθ=1},θ∈Rn
证明:一个单纯形是一种多面体
x
∈
C
∈
R
n
,
C
为
s
i
m
p
l
e
x
⇔
x
=
θ
0
v
0
+
.
.
.
+
θ
k
v
k
,
1
T
θ
=
1
,
θ
≥
0
,
v
1
−
v
0
,
.
.
.
,
v
k
−
v
0
线
性
无
关
x\in C \in R^n, C为simplex \\ \Leftrightarrow x=\theta_0 v_0+...+\theta_k v_k,1^T \theta=1,\theta \geq 0,\\v_1-v_0,...,v_k-v_0线性无关\\
x∈C∈Rn,C为simplex⇔x=θ0v0+...+θkvk,1Tθ=1,θ≥0,v1−v0,...,vk−v0线性无关
定 义 : y = [ θ 1 , . . . , θ k ] T , y i ≥ 0 , 1 T y ≤ 1 B = [ v 1 − v 0 , . . . , v k − v 0 ] T ∈ R n × k x ∈ C ⇔ x = θ 0 v 0 + . . . + θ k v k = v 0 + θ 1 ( v 1 − v 0 ) + . . . + θ k ( v k − v 0 ) = v 0 + B y 定义:y=[\theta_1,...,\theta_k]^T,y_i \geq 0, 1^T y \leq 1 \\ B=[v_1-v_0,...,v_k-v_0]^T \in R^{n \times k} \\ x \in C \Leftrightarrow x=\theta_0 v_0+...+\theta_k v_k \\ = v_0+\theta_1(v_1-v_0)+...+\theta_k(v_k-v_0) \\ = v_0 + By 定义:y=[θ1,...,θk]T,yi≥0,1Ty≤1B=[v1−v0,...,vk−v0]T∈Rn×kx∈C⇔x=θ0v0+...+θkvk=v0+θ1(v1−v0)+...+θk(vk−v0)=v0+By
引入如下结论:
B
=
[
v
1
−
v
0
,
.
.
.
,
v
k
−
v
0
]
线
性
无
关
,
故
r
a
n
k
(
B
)
=
k
≤
n
对
于
非
奇
异
矩
阵
B
,
一
定
存
在
一
个
矩
阵
A
=
[
I
k
0
]
∈
[
R
k
×
k
0
(
n
−
k
)
×
k
]
使
得
A
B
=
[
A
1
A
2
]
B
=
[
I
k
0
]
B=[v_1-v_0,...,v_k-v_0]线性无关,故rank(B) = k \leq n \\ 对于非奇异矩阵B,一定存在一个矩阵\\ A=\left[ \begin{matrix} I_k \\ 0 \end{matrix} \right] \in \left[ \begin{matrix} R^{k \times k} \\ 0^{(n-k) \times k} \end{matrix} \right]\\ 使得 AB=\left[ \begin{matrix} A_1 \\ A_2 \end{matrix} \right]B=\left[ \begin{matrix} I_k \\ 0 \end{matrix} \right] \\
B=[v1−v0,...,vk−v0]线性无关,故rank(B)=k≤n对于非奇异矩阵B,一定存在一个矩阵A=[Ik0]∈[Rk×k0(n−k)×k]使得AB=[A1A2]B=[Ik0]
则对于前面得到的等式我们可以做如下变换:
x
=
v
0
+
B
y
⇒
A
x
=
A
v
0
+
A
B
y
⇔
[
A
1
A
2
]
x
=
[
A
1
A
2
]
v
0
+
[
A
1
B
A
2
B
]
y
⇔
{
A
1
x
=
A
1
v
0
+
y
A
2
x
=
A
2
v
0
⇔
{
A
1
x
≥
A
1
v
0
1
T
A
1
x
≤
1
+
1
T
A
1
v
0
A
2
x
=
A
2
v
0
⇒
由
不
等
式
和
等
式
构
成
,
是
多
面
体
x=v_0+By \\ \Rightarrow Ax=Av_0+ABy\\ \Leftrightarrow \left[ \begin{matrix} A_1 \\ A_2 \end{matrix} \right]x=\left[ \begin{matrix} A_1 \\ A_2 \end{matrix} \right]v_0+\left[ \begin{matrix} A_1B \\ A_2B \end{matrix} \right]y\\ \Leftrightarrow \left\{ \begin{matrix} A_1x=A_1v_0+y\\ A_2x=A_2v_0 \end{matrix} \right.\\ \Leftrightarrow \left\{ \begin{matrix} A_1x \geq A_1v_0\\ 1^TA_1x \leq 1+1^TA_1v_0\\ A_2x=A_2v_0 \end{matrix} \right. \\ \Rightarrow 由不等式和等式构成,是多面体\\
x=v0+By⇒Ax=Av0+ABy⇔[A1A2]x=[A1A2]v0+[A1BA2B]y⇔{A1x=A1v0+yA2x=A2v0⇔⎩⎨⎧A1x≥A1v01TA1x≤1+1TA1v0A2x=A2v0⇒由不等式和等式构成,是多面体
4、一些对称矩阵
对称矩阵集合 S n = { x ∈ R n × n ∣ x = x T } S^n=\{x \in R^{n \times n} \mid x=x^T\} Sn={x∈Rn×n∣x=xT}
对称半正定矩阵集合 S + n = { x ∈ R n × n ∣ x = x T , x ⪰ 0 } S^n_+=\{x \in R^{n \times n} \mid x=x^T,x \succeq 0\} S+n={x∈Rn×n∣x=xT,x⪰0}
对称正定矩阵集合 S + + n = { x ∈ R n × n ∣ x = x T , x ≻ 0 } S^n_{++}=\{x \in R^{n \times n} \mid x=x^T, x \succ 0\} S++n={x∈Rn×n∣x=xT,x≻0}
证明:
S
+
n
S^n_+
S+n是
C
o
n
v
e
x
C
o
n
e
Convex \space Cone
Convex Cone,即:
∀
θ
1
,
θ
2
≥
0
,
∀
A
,
B
∈
S
+
n
,
证
明
θ
1
A
+
θ
2
B
∈
S
+
n
\forall \space\space \theta_1,\theta_2 \geq 0, \forall \space\space A,B \in S^n_+,证明 \space \theta_1A+\theta_2B \in S^n_+ \\
∀ θ1,θ2≥0,∀ A,B∈S+n,证明 θ1A+θ2B∈S+n
证:
∀
x
∈
R
n
,
x
≠
0
,
x
T
A
x
≥
0
,
x
T
B
x
≥
0
x
T
(
θ
1
A
+
θ
2
B
)
x
=
θ
1
x
T
A
x
+
θ
2
x
T
B
x
≥
0
⇒
正
定
得
证
(
θ
1
A
+
θ
2
B
)
T
=
(
θ
1
A
T
+
θ
2
B
T
)
=
(
θ
1
A
+
θ
2
B
)
⇒
对
称
得
证
故
:
θ
1
A
+
θ
2
B
∈
S
+
n
\forall \space\space x \in R^n,x \neq 0, x^TAx \geq 0,x^TBx \geq 0 \\ x^T(\theta_1A+\theta_2B)x =\theta_1x^TAx+\theta_2x^TBx \geq 0 \Rightarrow 正定得证\\ (\theta_1A+\theta_2B)^T=(\theta_1A^T+\theta_2B^T)=(\theta_1A+\theta_2B)\Rightarrow 对称得证 \\ 故:\theta_1A+\theta_2B \in S^n_+
∀ x∈Rn,x=0,xTAx≥0,xTBx≥0xT(θ1A+θ2B)x=θ1xTAx+θ2xTBx≥0⇒正定得证(θ1A+θ2B)T=(θ1AT+θ2BT)=(θ1A+θ2B)⇒对称得证故:θ1A+θ2B∈S+n
S
+
+
n
S^n_{++}
S++n不是
C
o
n
v
e
x
C
o
n
e
Convex \space Cone
Convex Cone,是凸集
∀
x
∈
R
n
,
x
≠
0
,
x
T
A
x
≥
0
,
x
T
B
x
≥
0
x
T
(
θ
1
A
+
θ
2
B
)
x
=
θ
1
x
T
A
x
+
θ
2
x
T
B
x
≯
0
因
为
θ
1
,
θ
2
=
0
时
θ
1
x
T
A
x
+
θ
2
x
T
B
x
=
0
,
不
符
合
凸
锥
定
义
\forall \space\space x \in R^n,x \neq 0, x^TAx \geq 0,x^TBx \geq 0 \\ x^T(\theta_1A+\theta_2B)x =\theta_1x^TAx+\theta_2x^TBx \ngtr 0 \\ 因为\theta_1,\theta_2=0时\space \theta_1x^TAx+\theta_2x^TBx = 0,不符合凸锥定义
∀ x∈Rn,x=0,xTAx≥0,xTBx≥0xT(θ1A+θ2B)x=θ1xTAx+θ2xTBx≯0因为θ1,θ2=0时 θ1xTAx+θ2xTBx=0,不符合凸锥定义