全方位解析KAG。
微信搜索关注《AI科技论谈》
随着人工智能技术的不断演进,知识增强生成(KAG)作为一项创新型技术,正在逐步取代传统的检索增强生成(RAG)系统,增强了专业精确度和领域智能。
本文带大家详细解析KAG的架构、优势及其在实际应用中的表现。
RAG
RAG,即检索增强生成,是一种为大型语言模型(LLM)提供额外知识的技术,提供了模型训练之外的信息。
其核心步骤包括:
-
文档:使用个人或定制的数据。
-
块:从小规模到大规模文档中提取信息片段。
-
嵌入:将文本信息转化为向量形式。
-
检索数据:用户提问后,问题转化为向量,并通过语义搜索在数据库中匹配答案,然后与问题一起输入模型以生成回答。
GraphRAG
RAG在向量检索中存在一些限制,主要是缺乏深入的上下文理解和复杂的推理能力。
现在,先稍微了解一下GraphRAG,这样才能更好地理解KAG。
那么,GraphRAG,简单地说,通过节点和边的形式存储数据:
-
节点:代表单个数据实体,如人、地点或物体,每个节点都有标识符、标签和属性。
-
边:表示节点间的联系,展示它们的关系,包括起点、终点、类型和属性。
例如,如果Samar和ABC公司是实体,那么“Samar在ABC公司工作”就是一个边的描述。
KAG:下一代智能框架
KAG集开放信息提取、知识图谱和多跳推理技术于一身,构建了一个统一的智能框架。
相较于传统RAG,KAG不仅依赖语义搜索,还结合了逻辑推理和混合检索,能够有效避免因数据不完整或不相关而导致的误差,确保答案的精确性和可靠性。
KAG的技术架构
KAG的技术架构分为两大主要环节:
-
数据存储:
-
接收非结构化的领域特定文档,如文本和报告。
-
通过语义分块将文档分解为有意义的信息块。
-
提取实体、事件和关系等结构化信息,准备进一步处理。
-
将信息与领域知识库对齐,整合预定义模式和领域概念。
-
将数据与知识图谱链接,增强数据的语义一致性和细节,以适配LLM。
-
数据检索:
-
逻辑形式求解器通过规划、推理和检索三个步骤解决复杂问题。
-
规划涉及拆解问题,确定解决问题的顺序。
-
推理是根据拆解后的问题检索信息,推断答案,或在需要时进一步拆解子问题。
-
检索旨在找到可用于解答原始问题或子问题的参考内容。
-
选择KAG的理由:
RAG在特定情况下有效,但它存在知识分散、推理能力弱和复杂查询错误多的问题。KAG通过以下方式改善了这些问题:
-
整合知识:统一整合不同数据源。
-
强化推理:使用高级算法提高答案准确性。
-
提高精确度:针对特定领域优化,增强可靠性和精确性。
KAG的实际应用
KAG的实际应用广泛:
-
电子政务:快速准确地回应公众咨询。
-
医疗领域:提升诊断和治疗方案的知识检索精准度。
-
专业领域:在金融、法律和教育等行业中处理复杂的多步骤查询。
性能基准与表现
KAG在HotpotQA、WikiHop和MusicQA等标准测试中展现出比传统RAG系统更优的效果。
AI新时代
KAG是AI领域的一大进步,它通过结合强大的推理和统一知识体系,超越了RAG的局限,树立了新的专业智能标准。
随着KAG技术的不断演进,它有望彻底改变行业并重新定义AI解决方案。让我们拥抱这项技术,共同迈入AI的新发展阶段。
推荐书单
《大模型RAG实战:RAG原理、应用与系统构建》
内容简介这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。通过阅读本书,你将掌握以下知识:?透彻理解RAG的召回和生成模块算法?高级RAG系统的技巧?RAG系统的各种训练方式方法?深入了解RAG的范式变迁?实战0基础搭建RAG系统?实战高级RAG系统微调与流程搭建
购买链接:https://item.jd.com/14780610.html
精彩回顾
QwQ-32B本地部署教程来了,全新开源推理大模型,性能比肩DeepSeek满血版
解读Deep Research:传统RAG已死,带你实现Agentic RAG