从RAG到KAG,利用知识图谱大幅提升检索性能

全方位解析KAG。

微信搜索关注《AI科技论谈》  

随着人工智能技术的不断演进,知识增强生成(KAG)作为一项创新型技术,正在逐步取代传统的检索增强生成(RAG)系统,增强了专业精确度和领域智能。

本文带大家详细解析KAG的架构、优势及其在实际应用中的表现。

RAG

RAG,即检索增强生成,是一种为大型语言模型(LLM)提供额外知识的技术,提供了模型训练之外的信息。

其核心步骤包括:

  • 文档:使用个人或定制的数据。

  • :从小规模到大规模文档中提取信息片段。

  • 嵌入:将文本信息转化为向量形式。

  • 检索数据:用户提问后,问题转化为向量,并通过语义搜索在数据库中匹配答案,然后与问题一起输入模型以生成回答。

GraphRAG

RAG在向量检索中存在一些限制,主要是缺乏深入的上下文理解和复杂的推理能力。

现在,先稍微了解一下GraphRAG,这样才能更好地理解KAG。

那么,GraphRAG,简单地说,通过节点和边的形式存储数据:

  • 节点:代表单个数据实体,如人、地点或物体,每个节点都有标识符、标签和属性。

  • :表示节点间的联系,展示它们的关系,包括起点、终点、类型和属性。

例如,如果Samar和ABC公司是实体,那么“Samar在ABC公司工作”就是一个边的描述。

KAG:下一代智能框架

KAG集开放信息提取、知识图谱和多跳推理技术于一身,构建了一个统一的智能框架。

相较于传统RAG,KAG不仅依赖语义搜索,还结合了逻辑推理和混合检索,能够有效避免因数据不完整或不相关而导致的误差,确保答案的精确性和可靠性。

KAG的技术架构

KAG的技术架构分为两大主要环节:

  • 数据存储

  • 接收非结构化的领域特定文档,如文本和报告。

  • 通过语义分块将文档分解为有意义的信息块。

  • 提取实体、事件和关系等结构化信息,准备进一步处理。

  • 将信息与领域知识库对齐,整合预定义模式和领域概念。

  • 将数据与知识图谱链接,增强数据的语义一致性和细节,以适配LLM。

  • 数据检索

    • 逻辑形式求解器通过规划、推理和检索三个步骤解决复杂问题。

    • 规划涉及拆解问题,确定解决问题的顺序。

    • 推理是根据拆解后的问题检索信息,推断答案,或在需要时进一步拆解子问题。

    • 检索旨在找到可用于解答原始问题或子问题的参考内容。

选择KAG的理由:

RAG在特定情况下有效,但它存在知识分散、推理能力弱和复杂查询错误多的问题。KAG通过以下方式改善了这些问题:

  • 整合知识:统一整合不同数据源。

  • 强化推理:使用高级算法提高答案准确性。

  • 提高精确度:针对特定领域优化,增强可靠性和精确性。

KAG的实际应用

KAG的实际应用广泛:

  • 电子政务:快速准确地回应公众咨询。

  • 医疗领域:提升诊断和治疗方案的知识检索精准度。

  • 专业领域:在金融、法律和教育等行业中处理复杂的多步骤查询。

性能基准与表现

KAG在HotpotQA、WikiHop和MusicQA等标准测试中展现出比传统RAG系统更优的效果。

AI新时代

KAG是AI领域的一大进步,它通过结合强大的推理和统一知识体系,超越了RAG的局限,树立了新的专业智能标准。

随着KAG技术的不断演进,它有望彻底改变行业并重新定义AI解决方案。让我们拥抱这项技术,共同迈入AI的新发展阶段。

推荐书单

《大模型RAG实战:RAG原理、应用与系统构建》

内容简介这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。通过阅读本书,你将掌握以下知识:?透彻理解RAG的召回和生成模块算法?高级RAG系统的技巧?RAG系统的各种训练方式方法?深入了解RAG的范式变迁?实战0基础搭建RAG系统?实战高级RAG系统微调与流程搭建

购买链接:https://item.jd.com/14780610.html

精彩回顾

数据分析神器PandasAI,帮你高效处理10项常见任务

6款必知的AI Agent工作流,优缺点解析

QwQ-32B本地部署教程来了,全新开源推理大模型,性能比肩DeepSeek满血版

解读Deep Research:传统RAG已死,带你实现Agentic RAG

大模型应用开发平台Dify推出1.0版本,基于向量数据库Milvus实现RAG

从推理到编程,详细比较DeepSeek 32B、70B、R1实践性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值