例一 画出多项式 f ( x ) = 2 x 6 + 3 x 5 + 3 x 3 − 2 x 2 f(x) = 2x^6 + 3x^5 + 3x^3 - 2x^2 f(x)=2x6+3x5+3x3−2x2 的图像。使用 f ′ f' f′ 和 f ′ ′ f'' f′′ 的图像来估计所有的极大值和极小值点及凹凸区间。
解
如果我们只指定一个定义域而不指定一个值域,许多图形设备会根据计算出的值推断出一个合适的值域。图1显示了在我们指定 − 5 ≤ x ≤ 5 -5 \le x \le 5 −5≤x≤5 时某个设备绘制的图像。虽然这个视图矩形对于显示渐近行为(或端点行为)与 y = 2 x 6 y = 2x^6 y=2x6 相同很有用,但它显然隐藏了一些更精细的细节。因此,我们更改为图2所示的 [ − 3 , 2 ] [-3, 2] [−3,2] 和 [ − 50 , 100 ] [-50, 100] [−50,100] 的视图矩形。
从图2可以看出,当 x ≈ − 1.62 x \approx -1.62 x≈−1.62 时,函数有一个大约为 − 15.33 -15.33 −15.33 的绝对最小值(通过使用光标),并且函数在 ( − ∞ , − 1.62 ) (-∞, -1.62) (−∞,−1.62) 上递减,在 ( − 1.62 , ∞ ) (-1.62, ∞) (−1.62,∞) 上递增。此外,在原点处似乎有一个水平切线,并且在 x = 0 x = 0 x=0 和 x x x 在 − 2 -2 −2 和 − 1 -1 −1 之间的某个位置时有拐点。
现在让我们尝试使用微积分来确认这些印象。我们进行微分得到:
f ′ ( x ) = 12 x 5 + 15 x 4 + 9 x 2 − 4 x f'(x) = 12x^5 + 15x^4 + 9x^2 - 4x f′(x)=12x5+15x4+9x2−4x
f ′ ′ ( x ) = 60 x 4 + 60 x 3 + 18 x − 4 f''(x) = 60x^4 + 60x^3 + 18x - 4 f′′(x)=60x4+60x3+18x−4
当我们在图3中绘制 f ′ f' f′ 时,我们看到 f ′ ( x ) f'(x) f′(x) 在 x ≈ − 1.62 x \approx -1.62 x≈−1.62 时从负变为正;这通过一阶导数检验(First Derivative Test)确认了我们先前找到的最小值。但或许令我们惊讶的是,我们还注意到 f ′ ( x ) f'(x) f′(x) 在 x = 0 x = 0 x=0 时从正变为负,并且在 x ≈ 0.35 x \approx 0.35 x≈0.35 时从负变为正。这意味着 f f f 在 0 0 0 处有一个局部最大值,在 x ≈ 0.35 x \approx 0.35 x≈0.35 处有一个局部最小值,但这些在图2中被隐藏了。事实上,如果我们现在放大到图4中的原点,我们会看到之前错过的内容:当 x = 0 x = 0 x=0 时的局部最大值为 0 0 0,当 x ≈ 0.35 x \approx 0.35 x≈0.35 时的局部最小值约为 − 0.1 -0.1 −0.1。
关于凹凸性和拐点呢?从图2和图4可以看出,当 x x x 稍微小于 − 1 -1 −1 并且当 x x x 稍微大于 0 0 0 时,似乎有拐点。但从函数 f f f 的图像很难确定拐点,所以我们绘制了二阶导数 f ′ ′ f'' f′′ 在图5中。我们看到 f ′ ′ f'' f′′ 在 x ≈ − 1.23 x \approx -1.23 x≈−1.23 时从正变为负,在 x ≈ 0.19 x \approx 0.19 x≈0.19 时从负变为正。因此,精确到两位小数, f f f 在 ( − ∞ , − 1.23 ) (-∞, -1.23) (−∞,−1.23) 和 ( 0.19 , ∞ ) (0.19, ∞) (0.19,∞) 上是凹向上的,在 ( − 1.23 , 0.19 ) (-1.23, 0.19) (−1.23,0.19) 上是凹向下的。拐点是 ( − 1.23 , − 10.18 ) (-1.23, -10.18) (−1.23,−10.18) 和 ( 0.19 , − 0.05 ) (0.19, -0.05) (0.19,−0.05)。
我们发现没有单一的图像能揭示这个多项式的所有重要特征。但图2和图4结合在一起时,可以提供一个准确的画面。
例二 画出函数 f ( x ) = x 2 + 7 x + 3 x 2 f(x) = \frac{x^2 + 7x + 3}{x^2} f(x)=x2x2+7x+3 的图像,在包含函数所有重要特征的视图矩形中。估计最大值和最小值以及凹凸区间。然后使用微积分精确求出这些量。
解
图6由计算机自动缩放生成,是个灾难。一些图形计算器使用 [ − 10 , 10 ] [-10, 10] [−10,10] 作为默认的视图矩形,所以让我们试试。我们得到了图7所示的图像,这是一大改进。
y轴似乎是一个垂直渐近线,确实如此,因为
lim x → 0 x 2 + 7 x + 3 x 2 = ∞ \lim_{ {x \to 0}} \frac{x^2 + 7x + 3}{x^2} = \infty x→0limx2x2+7x+3=∞
图7还允许我们估计 x x x截距:大约是 − 0.5 -0.5 −0.5和 − 6.5 -6.5 −6.5。通过使用求解方程 x 2 + 7 x + 3 = 0 x^2 + 7x + 3 = 0 x2+7x+3=0 的二次公式,可以得到精确值: x = − 7 ± 37 2 x = \frac{-7 \pm \sqrt{37}}{2} x=2−7±37