微积分-微分应用6(使用微积分和计算器绘图)

例一 画出多项式 f ( x ) = 2 x 6 + 3 x 5 + 3 x 3 − 2 x 2 f(x) = 2x^6 + 3x^5 + 3x^3 - 2x^2 f(x)=2x6+3x5+3x32x2 的图像。使用 f ′ f' f f ′ ′ f'' f′′ 的图像来估计所有的极大值和极小值点及凹凸区间。

如果我们只指定一个定义域而不指定一个值域,许多图形设备会根据计算出的值推断出一个合适的值域。图1显示了在我们指定 − 5 ≤ x ≤ 5 -5 \le x \le 5 5x5 时某个设备绘制的图像。虽然这个视图矩形对于显示渐近行为(或端点行为)与 y = 2 x 6 y = 2x^6 y=2x6 相同很有用,但它显然隐藏了一些更精细的细节。因此,我们更改为图2所示的 [ − 3 , 2 ] [-3, 2] [3,2] [ − 50 , 100 ] [-50, 100] [50,100] 的视图矩形。
在这里插入图片描述

从图2可以看出,当 x ≈ − 1.62 x \approx -1.62 x1.62 时,函数有一个大约为 − 15.33 -15.33 15.33 的绝对最小值(通过使用光标),并且函数在 ( − ∞ , − 1.62 ) (-∞, -1.62) (,1.62) 上递减,在 ( − 1.62 , ∞ ) (-1.62, ∞) (1.62,) 上递增。此外,在原点处似乎有一个水平切线,并且在 x = 0 x = 0 x=0 x x x − 2 -2 2 − 1 -1 1 之间的某个位置时有拐点。

现在让我们尝试使用微积分来确认这些印象。我们进行微分得到:

f ′ ( x ) = 12 x 5 + 15 x 4 + 9 x 2 − 4 x f'(x) = 12x^5 + 15x^4 + 9x^2 - 4x f(x)=12x5+15x4+9x24x
f ′ ′ ( x ) = 60 x 4 + 60 x 3 + 18 x − 4 f''(x) = 60x^4 + 60x^3 + 18x - 4 f′′(x)=60x4+60x3+18x4

当我们在图3中绘制 f ′ f' f 时,我们看到 f ′ ( x ) f'(x) f(x) x ≈ − 1.62 x \approx -1.62 x1.62 时从负变为正;这通过一阶导数检验(First Derivative Test)确认了我们先前找到的最小值。但或许令我们惊讶的是,我们还注意到 f ′ ( x ) f'(x) f(x) x = 0 x = 0 x=0 时从正变为负,并且在 x ≈ 0.35 x \approx 0.35 x0.35 时从负变为正。这意味着 f f f 0 0 0 处有一个局部最大值,在 x ≈ 0.35 x \approx 0.35 x0.35 处有一个局部最小值,但这些在图2中被隐藏了。事实上,如果我们现在放大到图4中的原点,我们会看到之前错过的内容:当 x = 0 x = 0 x=0 时的局部最大值为 0 0 0,当 x ≈ 0.35 x \approx 0.35 x0.35 时的局部最小值约为 − 0.1 -0.1 0.1
在这里插入图片描述
在这里插入图片描述

关于凹凸性和拐点呢?从图2和图4可以看出,当 x x x 稍微小于 − 1 -1 1 并且当 x x x 稍微大于 0 0 0 时,似乎有拐点。但从函数 f f f 的图像很难确定拐点,所以我们绘制了二阶导数 f ′ ′ f'' f′′ 在图5中。我们看到 f ′ ′ f'' f′′ x ≈ − 1.23 x \approx -1.23 x1.23 时从正变为负,在 x ≈ 0.19 x \approx 0.19 x0.19 时从负变为正。因此,精确到两位小数, f f f ( − ∞ , − 1.23 ) (-∞, -1.23) (,1.23) ( 0.19 , ∞ ) (0.19, ∞) (0.19,) 上是凹向上的,在 ( − 1.23 , 0.19 ) (-1.23, 0.19) (1.23,0.19) 上是凹向下的。拐点是 ( − 1.23 , − 10.18 ) (-1.23, -10.18) (1.23,10.18) ( 0.19 , − 0.05 ) (0.19, -0.05) (0.19,0.05)
在这里插入图片描述
我们发现没有单一的图像能揭示这个多项式的所有重要特征。但图2和图4结合在一起时,可以提供一个准确的画面。

例二 画出函数 f ( x ) = x 2 + 7 x + 3 x 2 f(x) = \frac{x^2 + 7x + 3}{x^2} f(x)=x2x2+7x+3 的图像,在包含函数所有重要特征的视图矩形中。估计最大值和最小值以及凹凸区间。然后使用微积分精确求出这些量。

图6由计算机自动缩放生成,是个灾难。一些图形计算器使用 [ − 10 , 10 ] [-10, 10] [10,10] 作为默认的视图矩形,所以让我们试试。我们得到了图7所示的图像,这是一大改进。
在这里插入图片描述

y轴似乎是一个垂直渐近线,确实如此,因为

lim ⁡ x → 0 x 2 + 7 x + 3 x 2 = ∞ \lim_{ {x \to 0}} \frac{x^2 + 7x + 3}{x^2} = \infty x0limx2x2+7x+3=

图7还允许我们估计 x x x截距:大约是 − 0.5 -0.5 0.5 − 6.5 -6.5 6.5。通过使用求解方程 x 2 + 7 x + 3 = 0 x^2 + 7x + 3 = 0 x2+7x+3=0 的二次公式,可以得到精确值: x = − 7 ± 37 2 x = \frac{-7 \pm \sqrt{37}}{2} x=27±37

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值