opencv3的tracking部分在opencv_contrib中,需要用CMake对其进行编译后才能使用。
Tracker类:
create
//通过名称创建一个跟踪器。
create(
const String& trackerType//要使用的跟踪器算法的名称。
);
init
//使用围绕目标的边界框初始化跟踪器
init(
const Mat& image, //初始帧
const Rect2d& boundingBox//初始绑定框
);
init()如果初始化成功,则返回true,否则返回false.
update
//更新跟踪器,找到目标的最可能的边界框。
update(
const Mat& image,//当前帧
CV_OUT Rect2d& boundingBox//新目标位置的边界框,若为true,则返回;否则不进行修改。
);
update()返回true时表示目标被定位,false表示跟踪器不能在当前帧中定位目标(目标确实从框架中丢失)。
示例
#include<opencv2/opencv.hpp>
#include<opencv2/tracking.hpp>
using namespace cv;
int main()
{
Mat frame;
VideoCapture capture;
capture.open(0);
if (!capture.isOpened())
{
printf("can not open camera \n");
return -1;
}
namedWindow("output", WINDOW_AUTOSIZE);
Ptr<Tracker> tracker = Tracker::create("KCF");
//TLD速度超慢
//Ptr<Tracker> tracker = Tracker::create("TLD");
//Ptr<Tracker> tracker = Tracker::create("MEDIANFLOW");
capture.read(frame);
//翻转图像
flip(frame, frame, 1);
Rect2d roi;
roi = selectROI("output", frame);
if (roi.width == 0 || roi.height == 0)
{
return -1;
}
//跟踪
tracker->init(frame, roi);
while (capture.read(frame))
{
if (frame.empty())
{
return -1;
}
flip(frame, frame, 1);
tracker->update(frame, roi);
rectangle(frame, roi, Scalar(255, 0, 0), 2, 8, 0);
imshow("output", frame);
char c = waitKey(1);
if (c==27)
{
break;
}
}
capture.release();
return 0;
}
框选目标:
目标跟踪: