variance和variation的区别

Variance  -方差

方差就是一组数据中平均值与任意点之间的距离。

The Variance is the distance between the mean of a set of data to any point in the data.

 

 

Variation -差异

正常预期结果与观测结果之间的差额总量即为差异

The amount of difference between a normal expected output to the observed output is variation.

 

转载于:https://www.cnblogs.com/zengqunzhao/p/10899133.html

在R语言中,Variation Independent of Mean (VIM)通常不是一个内置函数,而是一种统计学概念,用于衡量数据分散程度,尤其是当数据的平均值变化时,数据变异性的稳定性。VIM不受均值的影响,适用于比较不同组间的稳定性差异。 要手动计算VIM,首先需要计算每个观测值与其所在组的均值之差的平方,然后除以该组的方差。VIM通常用公式表示为: \[ \text{VIM} = \frac{\sum_{i=1}^{n}(x_i - \bar{x}_g)^2}{\text{Var}(x)} \] 这里: - \( x_i \) 是第i个观测值, - \( \bar{x}_g \) 是第g组的样本均值, - \( n \) 是组内的观察数, - \( \text{Var}(x) \) 是所有观测值的整体方差。 在R中,你可以这样做: ```r # 假设df是你的数据框,包含变量"variable_name"分成了groups列 library(dplyr) # 如果尚未加载,用于方便的数据处理 # 定义一个函数计算VIM calculate_vim <- function(data, group_col, var_col) { grouped_data <- data %>% group_by(!!group_col) %>% summarise(mean_val = mean(!!var_col), sum_squares_diff = sum((!!var_col - mean_val)^2), variance = var(!!var_col)) %>% mutate(vim = sum_squares_diff / variance) return(grouped_data$vim) } # 调用函数 vim_value <- calculate_vim(df, "groups", "variable_name") ``` 这只是一个基本示例,实际应用可能需要根据你的数据结构进行调整。如果你正在寻找现成的R包来处理这类统计分析,可能需要搜索“Variance Inflation Measure”相关的包,如`car`或`sandwich`等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值