很好的偏微分方程基础2---来自wikiversity

326 篇文章 2 订阅
183 篇文章 6 订阅


Partial differential equations

From Wikiversity

Partial differential equations (PDEs) are the most common method by which we model physical problems in engineering. Finite element methods are one of many ways of solving PDEs. This handout reviews the basics of PDEs and discusses some of the classes of PDEs in brief. The contents are based on Partial Differential Equations in Mechanics volumes 1 and 2 by A.P.S. Selvadurai andNonlinear Finite Elements of Continua and Structures by T. Belytschko, W.K. Liu, and B. Moran.

Contents

 [hide

Definition of a PDE[edit]

A PDE is a relationship between an unknown function of several variables and its partial derivatives.

Let u(x_1, x_2, x_3, t) be an unknown function. Theindependent variables are x_1,x_2,x_3, andt. We usually write

    u = u(x_1, x_2, x_3, t)

and say that u is thedependent variable.

Partial derivatives are denoted by expressions such as

    u_{,1} = \frac{\partial u}{\partial x_1} ~;~~      u_{,2} = \frac{\partial u}{\partial x_2} ~;~~      u_{,11} = \frac{\partial^2 u}{\partial x_1\partial x_1} \equiv \frac{\partial^2 u}{\partial x_1^2} ~;~~      u_{,12} = \frac{\partial^2 u}{\partial x_1\partial x_2}~.

Some examples of partial differential equations are

\begin{align}    u_{,t} = u_{,1} + u_{,2} &\Leftrightarrow \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x_1} +         \frac{\partial u}{\partial x_2} \\    \nabla^2 u = 0 \Leftrightarrow  u_{,11} + u_{,22} + u_{,33} = 0 &\Leftrightarrow       \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_3^2} = 0 \\    u_{,1111} = u_{,22} + u &\Leftrightarrow  \frac{\partial^4 u}{\partial x_1^4} = \frac{\partial^2 u}{\partial x_2^2} + u    ~.  \end{align}

An example of a system of partial differential equations is

    \boldsymbol{\nabla} (\boldsymbol{\nabla} \bullet \mathbf{u}) + \nabla^2 \mathbf{u} + \mathbf{f} = \mathbf{0} \Leftrightarrow      u_{k,ki} + u_{i,jj} + f_i = 0

In expanded form this system of equations is

\begin{align}    \frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_2}{\partial x_2\partial x_1} + \frac{\partial^2 u_3}{\partial x_3\partial x_1}    + \frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2} + \frac{\partial^2 u_1}{\partial x_3^2} + f_1     & = 0 \\    \frac{\partial^2 u_1}{\partial x_1\partial x_2} + \frac{\partial^2 u_2}{\partial x_2^2} + \frac{\partial^2 u_3}{\partial x_3\partial x_2}    + \frac{\partial^2 u_2}{\partial x_1^2} + \frac{\partial^2 u_2}{\partial x_2^2} + \frac{\partial^2 u_2}{\partial x_3^2} + f_2     & = 0 \\    \frac{\partial^2 u_1}{\partial x_1\partial x_3} + \frac{\partial^2 u_2}{\partial x_2\partial x_3} + \frac{\partial^2 u_3}{\partial x_3^2}    + \frac{\partial^2 u_3}{\partial x_1^2} + \frac{\partial^2 u_3}{\partial x_2^2} + \frac{\partial^2 u_3}{\partial x_3^2} + f_3     & = 0   \end{align}

It is often more convenient to write PDEs in vector notation or index notation.

Order of a PDE[edit]

The order of a PDE is determined by the highest derivative in the equation. For example,

\begin{align}    \frac{\partial u}{\partial x_1} - \frac{\partial u}{\partial x_2} & = 0 ~~~\text{is a first-order PDE.}\\    \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_3^2} & = 0           ~~~~\text{is a second-order PDE.}\\    \frac{\partial^4 u}{\partial x_1^4} + \frac{\partial^2 u}{\partial x_2^2} - u & = 0          ~~~~\text{is a fourth-order PDE.}\\    \left(\frac{\partial u}{\partial x_1}\right)^3 + \frac{\partial u}{\partial x_2} + u^4 & = 0           ~~~\text{is a first-order PDE.}  \end{align}

Linear and nonlinear PDEs[edit]

A linear PDE is one that of the first degree of its field variable and partial derivatives. For example,

\begin{align}    \frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_2} & = 0 ~~~\text{is linear}~.\\    \frac{\partial u}{\partial x_1} + \left(\frac{\partial u}{\partial x_2}\right)^2 & = 0         ~~~\text{is nonlinear}~.\\    \frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_2} + u^2 & = 0         ~~~\text{is nonlinear}~.\\    \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} & = x_1  ~~~\text{is linear}~.\\    \frac{\partial^2 u}{\partial x_1^2} + u\frac{\partial^2 u}{\partial x_2^2} & = 0  ~~~\text{is quasilinear}~.  \end{align}

The above equations can also be written in operator notation as

\begin{align}    D(u) = 0 & ~~\text{where}~~ D := \frac{\partial }{\partial x_1} + \frac{\partial }{\partial x_2}~. \\    D(u) = 0 & ~~\text{where}~~ D := \frac{\partial }{\partial x_1} +             \left(\frac{\partial }{\partial x_2}\right)^2~.\\    D(u) = 0 & ~~\text{where}~~ D := \frac{\partial }{\partial x_1} + \frac{\partial }{\partial x_2} + u^2~.\\    D(u) = x_1 & ~~\text{where}~~ D := \frac{\partial^2 }{\partial x_1^2} + \frac{\partial^2 }{\partial x_2^2}~.\\    D(u) = 0 & ~~\text{where}~~ D := \frac{\partial^2 }{\partial x_1^2} + u\frac{\partial^2 }{\partial x_2^2}~.  \end{align}

Homogeneous PDEs[edit]

Let L be a linear operator. Then an linear partial differential equation can be written in the form

     L(u) = f(x_1,x_2,x_3,t)~.

If f(x_1,x_2,x_3,t) = 0, the PDE is calledhomogeneous.

Elliptic, Hyperbolic, and Parabolic PDEs[edit]

We usually come across three-types of second-order PDEs in mechanics. These are classified aselliptic, hyperbolic, and parabolic.

The equations of elasticity (without inertial terms) are elliptic PDEs.Hyperbolic PDEs describe wave propagation phenomena. The heat conduction equation is an example of aparabolic PDE.

Each type of PDE has certain characteristics that help determine if a particular finite element approach is appropriate to the problem being described by the PDE. Interestingly, just knowing the type of PDE can give us insight into how smooth the solution is, how fast information propagates, and the effect of initial and boundary conditions.

  • In hyperbolic PDEs, the smoothness of the solution depends on the smoothness of the initial and boundary conditions. For instance, if there is a jump in the data at the start or at the boundaries, then the jump will propagate as a shock in the solution. If, in addition, the PDE is nonlinear, then shocks may develop even though the initial conditions and the boundary conditions are smooth. In a system modeled with a hyperbolic PDE information travels at a finite speed called the wavespeed. Information is not transmitted until the wave arrives.
  • In contrast, the solutions of elliptic PDEs are always smooth, even if the initial and boundary conditions are rough (though there may be singularities at sharp corners). In addition, boundary data at any point affect the solution at all points in the domain.
  • Parabolic PDEs are usually time dependent and represent diffusion-like processes. Solutions are smooth in space but may possess singularities. However, information travels at infinite speed in a parabolic system.

Suppose we have a second-order PDE of the form

    a(x_1,x_2) \frac{\partial^2 u}{\partial x_1^2} + b(x_1,x_2) \frac{\partial^2 u}{\partial x_1\partial x_2} +    c(x_1,x_2) \frac{\partial^2 u}{\partial x_2^2} + d(x_1,x_2) \frac{\partial u}{\partial x_1} +    e(x_1,x_2) \frac{\partial u}{\partial x_2} + f(x_1,x_2) u = g(x_1,x_2)

Then, the PDE is called elliptic if

     {     b^2 - 4ac < 0  ~~~~\implies~~~~ \text{ elliptic} ~.     }

An example is

     \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_1\partial x_2} + \frac{\partial^2 u}{\partial x_2^2} =        x_1 \frac{\partial u}{\partial x_1}

The PDE is called hyperbolic if

     {     b^2 - 4ac > 0  ~~~~\implies~~~~ \text{ hyperbolic} ~.     }

An example is

     \frac{\partial^2 u}{\partial x_1^2} + 3\frac{\partial^2 u}{\partial x_1\partial x_2} + \frac{\partial^2 u}{\partial x_2^2} =        x_1 \frac{\partial u}{\partial x_1}


The PDE is called parabolic if

     {     b^2 - 4ac = 0  ~~~~\implies~~~~ \text{ parabolic} ~.     }

An example is

     \frac{\partial^2 u}{\partial x_1^2} + 2\frac{\partial^2 u}{\partial x_1\partial x_2} + \frac{\partial^2 u}{\partial x_2^2} =        x_1 \frac{\partial u}{\partial x_1}

Solutions to Common PDEs[edit]

Partial differential equation appear in several areas of physics and engineering. A firm grasp of how to solveordinary differential equations is required to solve PDEs. In particular, solutions to the Sturm-Liouville problems should be familiar to anyone attempting to solve PDEs.

Application of PDEs in Physics and Engineering[edit]

There are many applications of partial differential equations in physics and engineering. Here are some examples:

Resources[edit]

The Heat conduction equation of 2-D is elliptic in space and parabolic in time.


来源: http://en.wikiversity.org/wiki/Partial_differential_equations

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值