•Principal Component Analysis(PCA)
•主成分分析(Principal Component Analysis, 简称PCA)是一种常用的基于变量协方差矩阵对信息进行处理、压缩和抽提的有效方法。
•
PCA
方法由于其在降维和特征提取方面的有效性,在人脸识别领域得到了广泛
的应用。
•
PCA
方法的基本原理是
:
利用
K-L
变换抽取人脸的主要成分,构成特征脸空间,识别时将测试图像投影到此空间,得到一组投影系数,通过与各个人脸图像比较进行识别。