PCA主成分分析

•Principal Component Analysis(PCA)

 

•主成分分析(Principal Component Analysis, 简称PCA)是一种常用的基于变量协方差矩阵对信息进行处理、压缩和抽提的有效方法。

 
PCA 方法由于其在降维和特征提取方面的有效性,在人脸识别领域得到了广泛  的应用。
PCA 方法的基本原理是 : 利用 K-L 变换抽取人脸的主要成分,构成特征脸空间,识别时将测试图像投影到此空间,得到一组投影系数,通过与各个人脸图像比较进行识别。
 
•利用特征脸法进行人脸识别的过程由训练阶段和识别阶段两个阶段组成
•其具体步骤如下:

第一步:假设训练集有 200 个样本,由灰度图组成,每个样本大小为 M*N
写出训练样本矩阵:
其中向量 xi 为由第 i 个图像的每一列向量堆叠成一列的 MN 维列向量 , 即把矩阵向量化 , 如下图所示:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值