凸集上投影

the following content is from https://cstheory.wordpress.com/2010/08/23/projections-onto-a-convex-body/#more-203.

 

Projections onto a Convex Body

Given a point {x} \in {​{\bf R}^d} and an affine subspace {H \neq {\bf R}^d}, the projection of {x} onto {H} is the point {P_H(x)} such that,

\displaystyle \begin{array}{rcl} \vert \vert x - P_H(x) \vert \vert = \min \{ \vert \vert x y \vert \vert ~ \mid y ~ \in H \} \end{array} .

One can obviously define other notions of projection but the above is probably the most commonly used in geometry. If {x \notin H} then the projected point {P_H(x)} is the unique point in {H} such that the vector {P_H(x) - x} is orthogonal to {H}. Also is well known that projecting any segment to an affine subspace can only shrink its length. The proofs of these facts are easy to see. But in fact these facts are just corollaries of the following two results.

Given any nonempty closed convex set {C \subseteq {\bf R}^d} and a point {x \in {\bf R}^d}, there is a unique point {P_C(x) \in C} such that,

 

\displaystyle \begin{array}{rcl} \vert \vert x - P_C(x) \vert \vert = \min \{ \vert \vert x - y \vert \vert ~ \mid ~ y \in C\} \end{array} .

and,

Let {C} be a nonempty closed convex set. The mapping {P_C : {\bf R}^d \rightarrow C} is a contraction i.e. for any {x,y \in {\bf R}^d} we have,

 

\displaystyle \begin{array}{rcl} \vert \vert P_C(x) - P_C(y) \vert \vert \leq \vert \vert x - y \vert \vert \end{array}

Applying these results to affine spaces (which are nonempty closed convex sets) yields the results mentioned earlier. This projection that maps x to P_C(x) is known as the metric projection. The proofs of these facts are in order.

Proof: First we show that the minimum distance to {C} is indeed obtained. This is easy and the details are as follows. Since {C} is nonempty there is some point {y \in C}. Let {l} denote {\vert \vert x - y \vert \vert}. Clearly a closest point to {x} can only lie in {C \cap B(x,l)} where {B(x,l)}denotes a closed ball of radius {l} with center {x}. But {C \cap B(x,l)} is a closed and bounded set and is therefore compact. It is also nonempty. The function {f(p)} defined for {p \in C \cap B(x,l)} as {f(p) = \vert \vert p - x \vert \vert}is a continuous function on a compact set and attains its minimum at some point {P_C(x)}.

Next we prove the point {P_C(x)} where {f} attains minimum, is unique. If {z \in C} is another point at which {\vert \vert x - z \vert \vert = \vert \vert x - P_C(x) \vert \vert} then in the triangle {xP_C(x)z}, which has two equal sides, the perpendicular from {x} onto segment {P_C(x)z} is clearly shorter than the length {\vert \vert x - z \vert \vert}. However the base of this perpendicular lies on the segment itself. By convexity of {C} the entire segment is in {C} and thus we have found a point in {C} closer to {x} than {P_C(x)} which is a contradiction.

Next we prove that the metric projection is a contraction.

Proof: Let the points {x,y} be projected to {P_C(x)} and {P_C(y)}respectively and assume {P_C(x) \neq P_C(y)}. Consider the hyperplanes {H_x, H_y} through {P_C(x),P_C(y)} that are orthogonal to the vector {P_C(x) - P_C(y)}. See figure below.

The main observation is that x must lie on the other side of H_x as P_C(y). If {x} lies on the same side of {H_x} as {P_C(y)} then one can always find a point on the segment {(P_C(x) P_C(y)]} closer to {x} than {P_C(x)} which would contradict that {P_C(x)} is the closest point to {x} in {C}. Similarly {y} cannot lie on same side of {H_y} as {P_C(x)}. Thus {\vert \vert x - y \vert \vert} is at least the distance between {H_x} and {H_y} which is {\vert \vert P_C(x) - P_C(y) \vert \vert}.

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值