排序:
默认
按更新时间
按访问量

Flask+Gunicorn+Gevent+Supervisor+Nginx生产环境部署

  老毛病了,在用某个新框架或新架构之前,总得花时间谷歌和自己折腾一番,才能知道这个框架和架构的优缺点,才会发现自己最喜欢、用的最顺手的的一种。近期在学习python,这里记录一下自己用的一套python web开发的部署环境。 简介   之所以选择Flask,而没选择用的最多的django,...

2018-10-19 02:26:36

阅读数:33

评论数:0

基于landmark的疲劳检测

经查阅相关文献,疲劳在人体面部表情中表现出大致三个类型:打哈欠(嘴巴张大且相对较长时间保持这一状态)、眨眼(或眼睛微闭,此时眨眼次数增多,且眨眼速度变慢)、点头(瞌睡点头)。 1、首先是检测眨眼,可以通过landmark点的标号直接定位眼睛位置,经实验验证,该一系列的点能够准确定位。下面重点分析...

2018-09-05 10:27:31

阅读数:158

评论数:0

多目标跟踪综述:Multiple Object Tracking: A Literature Review

原文链接(每年都会更新,现在是v4,2017年5月):Multiple Object Tracking: A Literature Review   摘要 多目标跟踪因其学术和商业潜力,在计算机视觉中逐渐备受关注。尽管如今已经有多种多样的方法来处理这个课题,但诸如目标重叠、外观剧变等问题仍然...

2018-07-24 14:35:21

阅读数:213

评论数:0

python与zmq系列(6)

现在,你已经熟练的掌握了REQ/REP模式,它是一个一对多的模式,一个REP对应多个REQ。         但是现实工作中,我们会遇到这样的难题,一个REP无法满足REQ的提问,因为REQ太多了,虽然可以增加一个REP,但是,这样做会带来很多问题。两个REP的端口不可能是一个,那么就需要将原来...

2018-07-24 10:37:25

阅读数:247

评论数:0

ZeroMQ(java)之负载均衡

我们在实际的应用中最常遇到的场景如下: A向B发送请求,B向A返回结果。。。。 但是这种场景就会很容易变成这个样子: 很多A向B发送请求,所以B要不断的处理这些请求,所以就会很容易想到对B进行扩展,由多个B来处理这些请求,那么这里就出现了另外一个问题: B对请求处理的速度可能不同,...

2018-07-24 10:11:05

阅读数:120

评论数:0

利用ZeroMQ传输图片

待传输的数据 cv::Mat mat 订阅端(sub) import cv2 import zmq sub_port = 6666 context = zmq.Context() #connect to socket we subscrib socket_sub = context.so...

2018-07-22 17:23:05

阅读数:149

评论数:0

目标检测 (Object Detection) 算法汇集

基于深度学习的目标检测综述(一)(2018年03月16日)  图像分类,检测及分割是计算机视觉领域的三大任务。图像分类模型(详情见这里)是将图像划分为单个类别,通常对应于图像中最突出的物体。但是现实世界的很多图片通常包含不只一个物体,此时如果使用图像分类模型为图像分配一个单一标签其实是非常粗糙的,...

2018-07-19 12:24:06

阅读数:353

评论数:0

DCGAN、WGAN、WGAN-GP、LSGAN、BEGAN原理总结及对比

GAN系列学习(2)——前生今世   本文已投稿至微信公众号--机器学习算法工程师,欢迎关注 1 2        本文是GAN系列学习–前世今生第二篇,在第一篇中主要介绍了GAN的原理部分,在此篇文章中,主要总结了常用的GAN包括DCGAN,WGAN,WGAN-GP,LS...

2018-07-18 12:07:17

阅读数:103

评论数:0

Focal Loss论文阅读笔记

Focal Loss for Dense Object Detection引入问题目前目标检测的框架一般分为两种:基于候选区域的two-stage的检测框架(比如fast r-cnn系列),基于回归的one-stage的检测框架(yolo,ssd这种),two-stage的效果好,one-stag...

2018-06-15 16:57:21

阅读数:146

评论数:0

一个图的连通子图个数

问题描述:给出一个无向图,输出图中连通分支的个数。无向图的连通分支是一个子图,因此在子图两个节点之间至少存在一个路径。 输入:给出一个连通图的二维数组0100010100010000000000000输出:联通子图的个数思路:从二位数组的第一行开始遍历,只遍历上三角(因为无向图是对称的),遍历第i...

2018-06-15 16:56:05

阅读数:457

评论数:0

机器学习中正则化项L1和L2的直观理解

正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函...

2018-06-15 16:45:29

阅读数:209

评论数:1

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于CNN的物体检测过程有所帮助。1 感受野的概念  在卷积神经网络中,感受野的定义是 卷积神经网络每...

2018-06-15 10:58:45

阅读数:161

评论数:0

基于深度学习的OCR-from 美團技術團隊

https://www.jisuapi.com/api/12行数据的话 可以参考https://github.com/wanghaisheng/awesome-ocr/wiki/Training-an-Ocropus-OCR-model-中文单字的数据可以参考https://github.com/...

2018-06-09 16:12:15

阅读数:262

评论数:0

VALSE2017系列之二: 边缘检测领域年度进展报告

深度学习大讲堂致力于推送人工智能,深度学习方面的最新技术,产品以及活动。请关注我们的知乎专栏!编者按:边缘检测是图像处理和计算机视觉中的基本问题,通过标识数字图像中亮度变化明显的点,来捕捉图像属性中的显著变化,包括深度上的不连续、表面方向的不连续、物质属性变化、和场景照明变化。南开大学的程明明副教...

2018-06-09 15:59:12

阅读数:359

评论数:0

OpenCV探索之路(七):霍夫变换

我们如何在图像中快速识别出其中的圆和直线?一个非常有效的方法就是霍夫变换,它是图像中识别各种几何形状的基本算法之一。霍夫线变换霍夫线变换是一种在图像中寻找直线的方法。OpenCV中支持三种霍夫线变换,分别是标准霍夫线变换、多尺度霍夫线变换、累计概率霍夫线变换。在OpenCV中可以调用函数Hough...

2018-06-03 17:13:36

阅读数:162

评论数:0

OpenCV探索之路(六):边缘检测(canny、sobel、laplacian)

边缘检测的一般步骤:滤波——消除噪声增强——使边界轮廓更加明显检测——选出边缘点Canny算法Canny边缘检测算法被很多人推崇为当今最优秀的边缘检测算法,所以我们第一个就介绍他。opencv中提供了Canny函数。#include<opencv2\opencv.hpp&am...

2018-06-03 17:12:11

阅读数:174

评论数:0

基于深度学习的行人重识别研究综述

前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。在监控视频中,由于相机分辨率和拍摄角度的缘故,...

2018-06-03 15:44:13

阅读数:818

评论数:0

zero-shot learning 论文三篇小结

what is zero-shot learning zero-shot learning 是为了能够识别在测试中出现,而在训练中未遇到过的数据类别。例如识别一张猫的图片,但在训练时没有训练到猫的图片和对应猫的标签。那么我们可以通过比较这张猫的图片和我们训练过程中的那些图片相近,进而找到这些相近图...

2018-05-24 23:14:42

阅读数:217

评论数:0

从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2

v1:Going deeper with convolutionsInception v1的网络,主要提出了Inceptionmodule结构(1*1,3*3,5*5的conv和3*3的pooling组合在一起),最大的亮点就是从NIN(Network in Network)中引入了1*1 con...

2018-05-17 09:34:02

阅读数:179

评论数:0

手打例子一步一步带你看懂softmax函数以及相关求导过程

这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流!softmax函数softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax...

2018-05-15 11:39:07

阅读数:397

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭