TensorFlow 2.0高效开发指南

Effective TensorFlow 2.0 为使TensorFLow用户更高效,TensorFlow 2.0中进行了多出更改。TensorFlow 2.0删除了篇冗余API,使API更加一致(统一RNNs, 统一优化器),并通过Eager execution更好地与Python集成。 许...

2019-05-27 17:56:31

阅读数 64

评论数 0

onnx模型转tensorflow模型

ONNX是开源神经网络交换平台,有了它基本上不用纠结用什么深度学习框架的问题了。我现在记录一下怎么将onnx模型转换成tensorflow模型。 1、安装tensorflow和onnx 我是通过Anaconda安装的。【详情】这个博客记载了安装Anaconda和onnx的详情,安装好Anaco...

2019-05-16 20:48:37

阅读数 89

评论数 0

神经网络架构搜索(Neural Architecture Search)杂谈

最新人工智能论文:http://paperreading.club 原文链接:https://blog.csdn.net/jinzhuojun/article/details/84698471 一、背景 机器学习从业者被戏称为“调参工”已经不是一天两天了。我们知道,机器学习算法的效果好坏不仅取...

2019-05-06 15:53:15

阅读数 129

评论数 0

[资源]ResNet caffemodel[百度网盘]

最新人工智能论文:http://paperreading.club 1、均值文件下载链接 链接:https://pan.baidu.com/s/1YerXs0WK0TH1v0Eo70A9ZA 提取码:l6wl 2、ResNet-50-model.caffemodel下载链接 链接:https:/...

2019-04-20 16:36:00

阅读数 355

评论数 0

shuffleNet v2

最新人工智能论文:http://paperreading.club 论文名称:ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design 论文地址:https://arxiv.org/abs/1807.11...

2019-04-18 15:43:35

阅读数 102

评论数 0

机器视觉:MobileNet 和 ShuffleNet

最新人工智能论文:http://paperreading.club 虽然很多CNN模型在图像识别领域取得了巨大的成功,但是一个越来越突出的问题就是模型的复杂度太高,无法在手机端使用,为了能在手机端将CNN模型跑起来,并且能取得不错的效果,有很多研究人员做了很多有意义的探索和尝试,今天就介绍两个比...

2019-04-17 16:24:26

阅读数 153

评论数 0

GPS轨迹数据集免费下载资源整理

本文主要是整理了GPS轨迹数据集免费资源库,从这些库中能够免费下载到GPS数据,同时还整理出了这些数据的格式,数据集的简单描述等等。如果你发现更好的相关数据资源,欢迎共享 :) 1. GeoLife GPS Trajectories 该GPS轨迹数据集出自微软研究GeoLift项目。从2007年...

2018-12-13 19:00:46

阅读数 476

评论数 0

快速了解GCN(图卷积神经网络)

如何理解 Graph Convolutional Network(GCN)? https://www.zhihu.com/question/54504471  推荐初学者可以先从知乎的这个问题出发,点赞最多的《从CNN到GCN的联系与区别——GCN从入门到精(fang)通(qi)》 该篇文章非常详...

2018-11-27 14:40:48

阅读数 2392

评论数 0

如何理解 Graph Convolutional Network(GCN)?

作者:superbrother 链接:https://www.zhihu.com/question/54504471/answer/332657604 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。   从CNN到GCN的联系与区别——GCN从入门到精(fang...

2018-11-27 14:10:24

阅读数 2064

评论数 0

基于landmark的疲劳检测

经查阅相关文献,疲劳在人体面部表情中表现出大致三个类型:打哈欠(嘴巴张大且相对较长时间保持这一状态)、眨眼(或眼睛微闭,此时眨眼次数增多,且眨眼速度变慢)、点头(瞌睡点头)。 1、首先是检测眨眼,可以通过landmark点的标号直接定位眼睛位置,经实验验证,该一系列的点能够准确定位。下面重点分析...

2018-09-05 10:27:31

阅读数 805

评论数 0

多目标跟踪综述:Multiple Object Tracking: A Literature Review

原文链接(每年都会更新,现在是v4,2017年5月):Multiple Object Tracking: A Literature Review   摘要 多目标跟踪因其学术和商业潜力,在计算机视觉中逐渐备受关注。尽管如今已经有多种多样的方法来处理这个课题,但诸如目标重叠、外观剧变等问题仍然...

2018-07-24 14:35:21

阅读数 476

评论数 0

目标检测 (Object Detection) 算法汇集

基于深度学习的目标检测综述(一)(2018年03月16日)  图像分类,检测及分割是计算机视觉领域的三大任务。图像分类模型(详情见这里)是将图像划分为单个类别,通常对应于图像中最突出的物体。但是现实世界的很多图片通常包含不只一个物体,此时如果使用图像分类模型为图像分配一个单一标签其实是非常粗糙的,...

2018-07-19 12:24:06

阅读数 1133

评论数 0

Focal Loss论文阅读笔记

Focal Loss for Dense Object Detection引入问题目前目标检测的框架一般分为两种:基于候选区域的two-stage的检测框架(比如fast r-cnn系列),基于回归的one-stage的检测框架(yolo,ssd这种),two-stage的效果好,one-stag...

2018-06-15 16:57:21

阅读数 221

评论数 0

机器学习中正则化项L1和L2的直观理解

正则化(Regularization)机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数。L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函...

2018-06-15 16:45:29

阅读数 291

评论数 1

卷积神经网络物体检测之感受野大小计算

学习RCNN系列论文时, 出现了感受野(receptive field)的名词, 感受野的尺寸大小是如何计算的,在网上没有搜到特别详细的介绍, 为了加深印象,记录下自己对这一感念的理解,希望对理解基于CNN的物体检测过程有所帮助。1 感受野的概念  在卷积神经网络中,感受野的定义是 卷积神经网络每...

2018-06-15 10:58:45

阅读数 257

评论数 0

VALSE2017系列之二: 边缘检测领域年度进展报告

深度学习大讲堂致力于推送人工智能,深度学习方面的最新技术,产品以及活动。请关注我们的知乎专栏!编者按:边缘检测是图像处理和计算机视觉中的基本问题,通过标识数字图像中亮度变化明显的点,来捕捉图像属性中的显著变化,包括深度上的不连续、表面方向的不连续、物质属性变化、和场景照明变化。南开大学的程明明副教...

2018-06-09 15:59:12

阅读数 1397

评论数 0

基于深度学习的行人重识别研究综述

转自:https://zhuanlan.zhihu.com/p/31921944 前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监...

2018-06-03 15:44:13

阅读数 4049

评论数 0

zero-shot learning 论文三篇小结

what is zero-shot learning zero-shot learning 是为了能够识别在测试中出现,而在训练中未遇到过的数据类别。例如识别一张猫的图片,但在训练时没有训练到猫的图片和对应猫的标签。那么我们可以通过比较这张猫的图片和我们训练过程中的那些图片相近,进而找到这些相近图...

2018-05-24 23:14:42

阅读数 865

评论数 0

从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2

v1:Going deeper with convolutionsInception v1的网络,主要提出了Inceptionmodule结构(1*1,3*3,5*5的conv和3*3的pooling组合在一起),最大的亮点就是从NIN(Network in Network)中引入了1*1 con...

2018-05-17 09:34:02

阅读数 253

评论数 0

手打例子一步一步带你看懂softmax函数以及相关求导过程

这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流!softmax函数softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax...

2018-05-15 11:39:07

阅读数 797

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭