Dynamic Coattention Networks For Question Answering

Dynamic Coattention Networks For Question Answering

Several deep learning models have been proposed for question answering. However, due to their single-pass nature, they have no way to recover from local maxima corresponding to incorrect answers. To address this problem, we introduce the Dynamic Coattention Network (DCN) for question answering. The DCN first fuses co-dependent representations of the question and the document in order to focus on relevant parts of both. Then a dynamic pointing decoder iterates over potential answer spans. This iterative procedure enables the model to recover from initial local maxima corresponding to incorrect answers. On the Stanford question answering dataset, a single DCN model improves the previous state of the art from 71.0% F1 to 75.9%, while a DCN ensemble obtains 80.4% F1.
Comments: 14 pages, 7 figures, International Conference on Learning Representations 2017
Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
Cite as: arXiv:1611.01604 [cs.CL]
  (or arXiv:1611.01604v3 [cs.CL] for this version)

Submission history

From: Victor Zhong [ view email
[v1] Sat, 5 Nov 2016 04:53:40 GMT (802kb,D)
[v2] Thu, 17 Nov 2016 19:58:22 GMT (803kb,D)
[v3] Mon, 13 Feb 2017 23:00:32 GMT (803kb,D)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值