Transformer再下一城!Swin-Unet:首个纯Transformer的医学图像分割网络

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

本文转载自:集智书童

Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation

论文:https://arxiv.org/abs/2105.05537

代码:https://github.com/HuCaoFighting/Swin-Unet

首个基于纯Transformer的U-Net形的医学图像分割网络,其中利用Swin Transformer构建encoder、bottleneck和decoder,表现SOTA!性能优于TransUnet、Att-UNet等,代码即将开源!
作者单位:慕尼黑工业大学, 复旦大学, 华为(田奇等人)

1简介

在过去的几年中,卷积神经网络(CNN)在医学图像分析中取得了里程碑式的进展。尤其是,基于U形结构和skip-connections的深度神经网络已广泛应用于各种医学图像任务中。但是,尽管CNN取得了出色的性能,但是由于卷积操作的局限性,它无法很好地学习全局和远程语义信息交互。

在本文中,作者提出了Swin-Unet,它是用于医学图像分割的类似Unet的纯Transformer模型。标记化的图像块通过跳跃连接被送到基于Transformer的U形Encoder-Decoder架构中,以进行局部和全局语义特征学习。

具体来说,使用带有偏移窗口的分层Swin Transformer作为编码器来提取上下文特征。并设计了一个symmetric Swin Transformer-based decoder with patch expanding layer来执行上采样操作,以恢复特征图的空间分辨率。在对输入和输出进行4倍的下采样和上采样的情况下,对多器官和心脏分割任务进行的实验表明,基于纯Transformer的U-shaped Encoder-Decoder优于那些全卷积或者Transformer和卷积的组合。

2Swin-Unet架构

图1 Swin-Unet架构:由Encoder, Bottleneck, Decoder和Skip Connections组成。
Encoder, Bottleneck以及Decoder都是基于Swin-Transformer block构造的实现。

2.1 Swin Transformer block

图2 Swin Transformer block

与传统的multi-head self attention(MSA)模块不同,Swin Transformer是基于平移窗口构造的。在图2中,给出了2个连续的Swin Transformer Block。每个Swin Transformer由LayerNorm(LN)层、multi-head self attention、residual connection和2个具有GELU的MLP组成。在2个连续的Transformer模块中分别采用了windowbased multi-head self attention(W-MSA)模块和 shifted window-based multi-head self attention (SW-MSA)模块。基于这种窗口划分机制的连续Swin Transformer Block可表示为:

其中, 分别表示(S)W-MSA模块和第 块的MLP模块的输出。

与前面的研究ViT类似,self attention的计算方法如下:

其中, 表示query、key和value矩阵。 分别表示窗口中patch的数量和query或key的维度。value来自偏置矩阵

2.2 Encoder

在Encoder中,将分辨率为 维tokenized inputs输入到连续的2个Swin Transformer块中进行表示学习,特征维度和分辨率保持不变。同时,patch merge layer会减少Token的数量(2×downsampling),将特征维数增加到2×原始维数。此过程将在Encoder中重复3次。

Patch merging layer

输入patch分为4部分,通过Patch merging layer连接在一起。这样的处理会使特征分辨率下降2倍。并且,由于拼接操作的结果是特征维数增加了4倍,因此在拼接的特征上加一个线性层,将特征维数统一为原始维数的2倍。

2.3 Decoder

与Encoder相对应的是基于Swin Transformer block的Symmetric Decoder。为此,与编码器中使用的patch merge层不同,我们在解码器中使用patch expand层对提取的深度特征进行上采样。patch expansion layer将相邻维度的特征图重塑为更高分辨率的特征图(2×上采样),并相应地将特征维数减半。

Patch expanding layer

以第1个Patch expanding layer为例,在上采样之前,对输入特征 加一个线性层,将特征维数增加到原始维数 的2倍。然后,利用rearrange operation将输入特征的分辨率扩大到输入分辨率的2倍,将特征维数降低到输入维数的1/4,即。

Up-Sampling会带来什么影响?

针对Encoder中的patch merge层,作者在Decoder中专门设计了Patch expanding layer,用于上采样和特征维数增加。为了探索所提出Patch expanding layer的有效性,作者在Synapse数据集上进行了双线性插值、转置卷积和Patch expanding layer的Swin-Unet实验。实验结果表明,本文提出的Swin-Unet结合Patch expanding layer可以获得更好的分割精度。

2.4 Bottleneck

由于Transformer太深导致收敛比较困难,因此使用2个连续Swin Transformer blocks来构造Bottleneck以学习深度特征表示。在Bottleneck处,特征维度和分辨率保持不变。

2.5 Skip connection

与U-Net类似,Skip connection用于融合来自Encoder的多尺度特征与上采样特征。这里将浅层特征和深层特征连接在一起,以减少降采样带来的空间信息损失。然后是一个线性层,连接特征尺寸保持与上采样特征的尺寸相同。

skip connections数量的影响?

Swin-UNet在1/4,1/8和1/16的降采样尺度上添加了skip connections。通过将skip connections数分别更改为0、1、2和3,实验了不同skip connections数量对模型分割性能的影响。从下表中可以看出,模型的性能随着skip connections数的增加而提高。因此,为了使模型更加鲁棒,本工作中设置skip connections数为3。

3实验结果

3.1 Synapse数据集

3.2 ACDC数据集

就很多基于Transformer的文章和已经开源的代码来看,模型的预训练会严重影响基于Transformer模型的性能。其实作者在文章的最后也提到了他们也是直接使用Swin-Transformer在ImageNet上的预训练权值来初始化网络的Encoder和Decoder的,这可能是一个次优方案。不过作者也在努力尝试实现完全端到端的实验了(此处点赞)。

论文PDF和代码下载

后台回复:0517,即可下载上述论文和代码

后台回复:CVPR2021,即可下载CVPR 2021论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的两篇Transformer综述PDF

重磅!Transformer交流群成立

扫码添加CVer助手,可申请加入CVer-Transformer 微信交流群,方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。

一定要备注:研究方向+地点+学校/公司+昵称(如Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲长按加小助手微信,进交流群

▲点击上方卡片,关注CVer公众号

整理不易,请给CVer点赞和在看

  • 16
    点赞
  • 80
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Transformer发轫于NLP(自然语言处理),并跨界应用到CV(计算机视觉)领域。 Swin Transformer是基于Transformer的计算机视觉骨干网,在图像分类、目标检测、实例分割、语义分割等多项下游CV应用中取得了SOTA的性能。该项工作也获得了ICCV 2021顶会最佳论文奖。本课程将手把手地教大家使用labelme标注和使用Swin Transformer训练自己的数据集进行图片和视频的实例分割。  本课程将介绍Transformer及在CV领域的应用、Swin Transformer的原理。 本课程以汽车驾驶场景图片和视频开展项目实践:对汽车行驶场景中的路坑、车、车道线进行物体标注和实例分割。  课程在Windows和Ubuntu系统上分别做项目演示。包括:安装软件环境、安装Pytorch、安装Swin-Transformer-Object-Detection、标注自己的数据集、准备自己的数据集、数据集格式转换(Python脚本完成)、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计、日志分析。  本课程提供项目的数据集和相关Python程序文件。相关课程: 《Transformer原理与代码精讲(PyTorch)》https://edu.csdn.net/course/detail/36697《Transformer原理与代码精讲(TensorFlow)》https://edu.csdn.net/course/detail/36699《ViT(Vision Transformer)原理与代码精讲》https://edu.csdn.net/course/detail/36719《DETR原理与代码精讲》https://edu.csdn.net/course/detail/36768《Swin Transformer实战目标检测:训练自己的数据集》https://edu.csdn.net/course/detail/36585《Swin Transformer实战实例分割:训练自己的数据集》https://edu.csdn.net/course/detail/36586《Swin Transformer原理与代码精讲》 https://download.csdn.net/course/detail/37045
Swin-UNet是一种新型图像分割模型,它融合了Swin Transformer和UNet的特性,具有较好的图像分割能力。下面我将简单介绍如何使得Swin-UNet运行。 首先,准备好所需的开发环境,包括Python环境和必要的库。确保安装好PyTorch、Torchvision和其他所需的依赖项。 接下来,下载Swin-TransformerSwin-UNet的代码。这些代码可以从GitHub上的相关仓库获取,可以使用Git命令将代码克隆到本地。确保克隆了最新的代码版本。 然后,准备好训练数据集。您可以选择一个适合您的应用场景的图像分割数据集,确保该数据集已经按照要求进行标注。将训练和验证数据集划分好,并按照指定的格式准备好。 接着,根据Swin-UNet的文档或示例代码,配置模型的参数和超参数。这些参数包括输入图像大小、批大小、学习率、网络层的尺寸等。根据您的需求和硬件资源,进行相应的调整。 之后,使用准备好的数据集进行训练。使用训练数据集和配置好的参数,运行训练代码,开始训练Swin-UNet模型。根据需要,您可以设定训练的迭代次数或停止条件。 训练完成后,您可以使用训练好的Swin-UNet模型进行图像分割任务的推理。提供一张测试图像,通过加载训练好的模型并对测试图像进行预测,获取图像分割的结果。 最后,根据需要对模型进行评估和调优。使用预留的验证数据集,计算模型在图像分割任务中的精度、召回率、准确率等指标。根据评估结果,进行模型的参数调整或其他优化操作。 总结来说,要使Swin-UNet跑通,您需要准备好开发环境、获取代码和数据集、配置参数、进行训练和推理,并对模型进行评估和调优。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值