SegFormer:使用Transformer进行语义分割的简单高效设计

SegFormer是一种结合Transformer和轻量级MLP解码器的语义分割框架,其创新的分层Transformer编码器无需位置编码,MLP解码器则通过融合局部和全局注意力实现强大表示。实验显示SegFormer在性能和效率上超越了现有模型,如在ADE20K上,参数量仅为64M的SegFormer-B4达到了50.3%的mIoU。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

将 Transformer 与轻量级多层感知 (MLP) 解码器相结合,表现SOTA!性能优于SETR、Auto-Deeplab和OCRNet等网络,代码即将开源!

注1:文末附【视觉Transformer】交流群

想看更多CVPR 2021论文和开源项目可以点击:

CVPR2021-Papers-with-Code

SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
在这里插入图片描述

  • 作者单位:香港大学, 南京大学, NVIDIA, Caltech
  • 代码:https://github.com/NVlabs/SegFormer
  • 论文:https://arxiv.org/abs/2105.15203

我们提出了 SegFormer,这是一种简单、高效但功能强大的语义分割框架,它将 Transformer 与轻量级多层感知 (MLP) 解码器相结合。

在这里插入图片描述

SegFormer 有两个吸引人的特性

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值