非线性控制基础(2)——平衡点、极限环

#本系列文章为笔者自学非线性控制理论的学习记录,如有不正之处欢迎指正

#参考书籍《非线性控制》Hassan K. Khalil

1.平衡点

  二维系统的解可以用平面上的曲线表示,可以直观地定性分析非线性系统的性质。在相平面上画出的方程的解的轨线就是方程的相图。

  首先考虑线性时不变系统:\dot{x}=Ax,其中A为2维实矩阵,只关注A具有互异非零特征值的情形,设\lambda _{1},\lambda _{2}为A的特征值。讨论特征值不同时系统平衡点类型的变化,结论如下表所示。

\lambda _{1}\lambda _{2}均为实数\lambda _{1}\lambda _{2}=\alpha \pm j\beta
\lambda _{1},\lambda _{2}< 0\lambda _{1},\lambda _{2}> 0\lambda _{1}\cdot \lambda _{2}< 0\alpha <0\alpha >0\alpha =0
类型稳定节点不稳定节点鞍点稳定焦点不稳定焦点中心

  非线性系统在平衡点附近的局部特性可以通过将系统在该平衡点处线性化,分析该线性系统的特性获得。在非线性系统线性化时会产生微小的误差,节点、鞍点、焦点受到微小扰动时仍会保持在原半平面,称其为结构稳定的,中心在受到微小扰动时,系统的稳定性会发生较大变化。

  二维时不变系统由微分方程表示为:

\dot{x_{1}}=f_{1}(x_{1},x_{2}),\dot{x_{2}}=f_{2}(x_{1},x_{2})

  设该系统存在平衡点(p_{1},p_{2}),将方程在平衡点泰勒展开可以得到:

\dot{x_{1}}=f_{1}(p_{1},p_{2})+\frac{\partial f_{1}}{\partial x_{1}}|_{x=p}(x_{1}-p_{1})+\frac{\partial f_{1}}{\partial x_{2}}|_{x=p}(x_{2}-p_{2})+H.O.T\\ \dot{x_{2}}=f_{2}(p_{1},p_{2})+\frac{\partial f_{2}}{\partial x_{1}}|_{x=p}(x_{1}-p_{1})+\frac{\partial f_{2}}{\partial x_{2}}|_{x=p}(x_{2}-p_{2})+H.O.T

式中,H.O.T为高阶无穷小量。f_{1}(p_{1},p_{2})=f_{2}(p_{1},p_{2})=0

  为便于分析,将平衡点移到原点,设y_{1}=x_{1}-p_{1},y_{2}=x_{2}-p_{2},忽略高阶项,上述方程可化为:

\dot{y_{1}}=a_{11}y_{1}+a_{12}y_{2}\\ \dot{y_{2}}=a_{21}y_{1}+a_{22}y_{2}

  式中,A=\begin{bmatrix} a11 &a12 \\ a21& a22 \end{bmatrix}= \begin{bmatrix} \frac{\partial f1}{\partial x1} &\frac{\partial f1}{\partial x2} \\ \frac{\partial f2}{\partial x1} & \frac{\partial f1}{\partial x2} \end{bmatrix}_{x=p}

2.极限环

2.1极限环的引出及定义

  当系统具有一个非平凡周期解时(非平凡排除了常数解),系统会发生振荡。在相图中周期解的轨线是一条闭合的曲线,称之为闭轨道。

  线性系统中存在谐振,例如线性LC振荡器,导致振荡存在的物理机制是储存在电感中的磁场能量与储存在电容中的电场能量间的能量交换且无耗散现象发生。事实上,由于存在线圈电阻,能量最终必然会衰减殆尽,且振荡的幅值取决于初始条件,而非系统的结构特性。

  非线性系统的振荡没有上述线性系统存在的问题,非线性系统振荡器是结构稳定的,振荡幅度与初始条件无关。

  在范德波尔(van der pol)系统中,系统的振荡在相图上只有一条孤立的闭轨道,称这种孤立的闭轨道的极限环。范德波尔方程中的极限环是稳定极限环:当时间趋于无穷时,极限环领域内的所有轨线都将趋于极限环;如果将范德波尔方程时间反向,会得到不稳定极限环:当时间趋于无穷时,极限环领域内的所有轨线都将远离极限环。

2.2实例分析

  非线性方程\left\{\begin{matrix} \dot{z_{1}}=z_{2}\\ \dot{z_{2}}=-z_{1}-z_{2}+\frac{1}{3}z_{2}^{3} \end{matrix}\right.是反向时间的范德波尔方程,在平衡点z=0附近存在一个不稳定的极限环。在区域z_{1}^{2}+z_{2}^{2}>3^{2}内的轨线是不稳定的,随着时间趋于无穷大,轨线也将发散。相图如下图所示:

  考虑非线性系统:\dot{x_{1}}=x_{2},\dot{x_{2}}=\frac{1}{3}x_{2}^{3}+u,其中,u=-\gamma ^{2}x_{1}-\gamma x_{2}(\gamma>0)。采用如下线性变换可将该系统转化为上述范德波尔方程:

\tau =\gamma t,z_{1}=\gamma ^{-1/2}x_{1},z_{2}=\gamma ^{1/2}x_{2}

  不稳定区域用x表达为:

\gamma x_{1}^{2}+\frac{1}{\gamma }x_{2}^{2}> 3^{2}

  该区域与坐标轴的交点为(\pm \frac{3}{\sqrt{\gamma }},0)(0,\pm 3\sqrt{\gamma })

  显然当\gamma趋于无穷时,稳定域会沿着轴x_{2}=0\frac{1}{\sqrt{\gamma }}的速率收缩至0,同时沿着轴x_{1}=0\sqrt{\gamma }的速率扩张。因此当\gamma取较大值时,稳定域将“消失”。

  该实例指向如下的结论:非线性系统的局部镇定常通过线性反馈实现,在该例中,通过引入控制量u使得非线性系统的抗扰动能力增加,且反馈增益\gamma的值越大,系统的抗扰动能力越强。但是\gamma的增大也会带来副作用,当反馈增益趋于无穷大时,不稳定的极限环会收缩至平衡点附近,稳定域“消失”,从而导致系统失稳。

#例子引自参考文献:

P. Kokotovic and R. Marino, "On vanishing stability regions in nonlinear systems with high-gain feedback," in IEEE Transactions on Automatic Control, vol. 31, no. 10, pp. 967-970, October 1986, doi: 10.1109/TAC.1986.1104140.

  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《非线性控制系统理论基础》是李殿璞的经典著作,第2版对第1版做了很多扩展和修订,加入了新的研究成果和理论,更加全面深入地探讨了非线性控制系统的理论基础和实际应用。 本书涵盖了非线性系统的数学模型、等价性原理、稳定性分析、控制策略、自适应控制、模糊控制、神经网络控制等多个方面。其中,最基本的理论是稳定性分析,作者对传统的Lyapunov稳定性理论和小扰动稳定性理论进行了详细介绍,也提出了新的稳定性条件。 此外,本书还探讨了非线性控制策略的设计方法,如反馈线性化、输入产生稳定性、后方相容性等,还介绍了数个最新的先进控制方法,如模糊控制、神经网络控制等。这些控制方法都是为了解决非线性系统控制的难题,具有广泛的应用场景。 总之,《非线性控制系统理论基础》第2版是一本非常重要的教材和参考书,对于理论研究工作者和控制工程师都有很大的价值。通过阅读本书,可以深入了解非线性控制系统相关的理论、方法和实践经验,有助于提升自己的研究和实践能力。 ### 回答2: 《非线性控制系统理论基础(第2版)李殿璞pdf》一书是介绍非线性控制系统的理论基础的,内容十分丰富,并且涵盖了非线性控制系统的各个方面。 本书首先介绍了非线性控制系统的基本概念和数学模型,包括非线性系统的描述方法、状态空间表示法和相平面分析法等。随后,详细介绍了系统的稳定性分析和设计方法,例如稳定性的定义、Lyapunov稳定性分析和降阶控制等。 此外,本书还介绍了一些较为高级的非线性控制系统技术,如反演控制、鲁棒控制、自适应控制和模糊控制等,这些技术是为了解决非线性系统的鲁棒性和适应性问题而提出的。 总的来说,本书详细介绍了非线性控制系统基础理论和一些高级技术,给读者提供了深入了解和应用非线性控制系统的知识和工具。这对于学者、工程师和研究人员来说都是一本非常有价值的参考书。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值