#本系列文章为笔者自学非线性控制理论的学习记录,如有不正之处欢迎指正
#参考书籍《非线性控制》Hassan K. Khalil
1.平衡点
二维系统的解可以用平面上的曲线表示,可以直观地定性分析非线性系统的性质。在相平面上画出的方程的解的轨线就是方程的相图。
首先考虑线性时不变系统:,其中A为2维实矩阵,只关注A具有互异非零特征值的情形,设
为A的特征值。讨论特征值不同时系统平衡点类型的变化,结论如下表所示。
类型 | 稳定节点 | 不稳定节点 | 鞍点 | 稳定焦点 | 不稳定焦点 | 中心 |
---|
非线性系统在平衡点附近的局部特性可以通过将系统在该平衡点处线性化,分析该线性系统的特性获得。在非线性系统线性化时会产生微小的误差,节点、鞍点、焦点受到微小扰动时仍会保持在原半平面,称其为结构稳定的,中心在受到微小扰动时,系统的稳定性会发生较大变化。
二维时不变系统由微分方程表示为:
设该系统存在平衡点,将方程在平衡点泰勒展开可以得到:
式中,H.O.T为高阶无穷小量。。
为便于分析,将平衡点移到原点,设,忽略高阶项,上述方程可化为:
式中,。
2.极限环
2.1极限环的引出及定义
当系统具有一个非平凡周期解时(非平凡排除了常数解),系统会发生振荡。在相图中周期解的轨线是一条闭合的曲线,称之为闭轨道。
线性系统中存在谐振,例如线性LC振荡器,导致振荡存在的物理机制是储存在电感中的磁场能量与储存在电容中的电场能量间的能量交换且无耗散现象发生。事实上,由于存在线圈电阻,能量最终必然会衰减殆尽,且振荡的幅值取决于初始条件,而非系统的结构特性。
非线性系统的振荡没有上述线性系统存在的问题,非线性系统振荡器是结构稳定的,振荡幅度与初始条件无关。
在范德波尔(van der pol)系统中,系统的振荡在相图上只有一条孤立的闭轨道,称这种孤立的闭轨道的极限环。范德波尔方程中的极限环是稳定极限环:当时间趋于无穷时,极限环领域内的所有轨线都将趋于极限环;如果将范德波尔方程时间反向,会得到不稳定极限环:当时间趋于无穷时,极限环领域内的所有轨线都将远离极限环。
2.2实例分析
非线性方程是反向时间的范德波尔方程,在平衡点z=0附近存在一个不稳定的极限环。在区域
内的轨线是不稳定的,随着时间趋于无穷大,轨线也将发散。相图如下图所示:
考虑非线性系统:,其中,
。采用如下线性变换可将该系统转化为上述范德波尔方程:
不稳定区域用x表达为:
该区域与坐标轴的交点为和
。
显然当趋于无穷时,稳定域会沿着轴
以
的速率收缩至0,同时沿着轴
以
的速率扩张。因此当
取较大值时,稳定域将“消失”。
该实例指向如下的结论:非线性系统的局部镇定常通过线性反馈实现,在该例中,通过引入控制量u使得非线性系统的抗扰动能力增加,且反馈增益的值越大,系统的抗扰动能力越强。但是
的增大也会带来副作用,当反馈增益趋于无穷大时,不稳定的极限环会收缩至平衡点附近,稳定域“消失”,从而导致系统失稳。
#例子引自参考文献:
P. Kokotovic and R. Marino, "On vanishing stability regions in nonlinear systems with high-gain feedback," in IEEE Transactions on Automatic Control, vol. 31, no. 10, pp. 967-970, October 1986, doi: 10.1109/TAC.1986.1104140.