我们都知道,通过 pip安装YOLOv8是非常方便的,但是有时候网络环境受到限制,比如公司的工作站(无法连接网络)或者机房的教学机器等等,只能通过离线的方式安装YOLOv8;今天就来记录一下离线搭建YOLOv8运行环境的过程。并记录了遇到的问题及解决过程。
文章目录
声明:本文中所有需要下载的文件、安装包等,均需要额外使用一台可以上网的电脑去下载,下载后将文件或安装包拷贝到不能联网的电脑中去安装。
一、准备运行环境
我的电脑环境为win10专业版,GPU是GTX1050.
1.1 基础知识
所需要的运行环境其实就是深度学习通用的运行环境,即Python+cuda+cuDNN(可选)+torch+torchvision+YOLOv8。
其中最重要的就是cuda的版本一定要和torch匹配,不然torch无法成功的调用cuda,这也是最容易踩坑的一点。
Python: 一种广泛使用的编程语言,因其简洁和丰富的库而成为深度学习的首选语言。
CUDA: NVIDIA 提供的并行计算平台和编程模型,允许在GPU上加速深度学习计算。
cuDNN(可选): NVIDIA