dq坐标系

直流电机磁场

下面是直流电机(可以看看自己的电动小马达内部)的磁场分布 
这里写图片描述 
我们可以看到,直流电机的磁场有励磁磁场和电枢磁场。其中上下两块磁体产生励磁磁场,方向从N->S。还有一个与励磁磁场垂直的电枢磁场。图中表明了方向(可以用右手定则来判断磁场方向,x是电流流入的方向,o是电流流出的方向,最后可以判断出磁场方向从左向右)。如果两片电枢的的轴线不是和励磁磁场垂直,那么励磁磁场和电枢磁场也会有一个夹角,通常电枢磁场总是和电刷的轴线重合。 
我们把主极(电磁磁场d)的轴线称为直轴,与直轴垂直的的轴线(电枢磁场q)称为交轴。 
说了这么多了总算是把dq引出来了。然而这只是一个类比而已,其实dq坐标系是没有物理意义的,是人们假想的坐标系。

感应电机磁场

这里写图片描述 
上面是三相感应电机的原理示意图。定子上有绑线圈的,并且可以接上交流电。如果这三个接上了相位相差120的同等正弦交流电会产生什么效果呢?每一个交流都会在线圈上产生磁场,然后三个磁场叠加, 
这里写图片描述 
最后就会变成如图所示的旋转磁场。而转子是闭合的线圈,定子产生的旋转磁场切割转子的闭合线圈,将会产生感应电流,感应电流在磁场会产生安培力,安培力驱动转子转动。最后产生的效果如下 
这里写图片描述 
三相感应电机的数学方程式非常复杂的,而且电机的很多控制参数在方程式耦合在一起的,如果想要单独控制是不可能的,那么该怎么办呢?有人发现了dq坐标系可以解决这个问题。 
简单说可以用下面的图表示(其实一般我们都是把dq坐标系放在转子的旋转磁场上) 
这里写图片描述 
具体如下图 
这里写图片描述 
上面的图初看很复杂,没关系,分解开来看。 
这里写图片描述 
abc会产生一个旋转磁场V(矢量),这个矢量的大小不变,旋转的角速度不变。如果这个矢量投影到alpha和beta上,则有 
Vα=Vcosα  
Vβ=Vsinα  
这个就是克拉克变换,三相静止到两厢静止(3s/2s)。 
具体就是下面 
这里写图片描述 
那么如果我们的静止坐标系  αβ  以某个角速度旋转起来,比如这个角速度的值和定子产生的旋转磁场的角速度相同。那么是不是旋转磁场与  αβ 坐标系是不是相对静止了呢?此时这个旋转的  αβ 坐标系我们就称为dq坐标系吧(这才是真正的dq坐标系)。dq坐标系与  αβ 坐标系之间的关系如下 
这里写图片描述 
与之对应的就是park变换,两相静止到两相旋转(2s/2r) 
这里写图片描述 
不过park变化我们一般说的都是三相静止到亮相旋转(3s/2r) 
这里写图片描述 
这里写图片描述

转子磁动势

设转子转速为n,转差率为s,定子产生的旋转磁场的同步转速为 ns ,则气隙磁场B将以 
Δn=nsn=sns  
的相对速度切割转子绕组。 Δn  称为转差。此时转子绕组的感应电动势E和转子产生的电流I的频率 f2 应为 
f2=pΔn60=pns60s=sf1
f2 称为转差频率。频率为 f2 的转子电流将产生转子旋转磁动势F。F相对于转子的转速 
n2=60f2p=60sf1p=sns=Δn
由于转子本身以转速n在旋转,因此从定子侧观察时,F在空间的转速应该为 
n2+n=Δ+n=ns  
这说明无论转子的实际转速是多少,转子磁动势F在空间的转速总是等于定子磁动势转速,并且和定子磁动势保存相对静止。

转载于http://blog.csdn.net/he_wen_jie/article/details/51106676

### dq坐标系及其概念 #### 定义与基本原理 dq坐标系是一种用于分析交流电机动态特性的数学工具,在该坐标系中,旋转的三相系统被转换成两个静止的直流分量。这种变换使得复杂的多变量控制系统简化为易于处理的形式[^1]。 具体来说,dq坐标系通过Clarke和Park变换将传统的ABC三相坐标下的电压、电流等电气量映射至同步旋转变换后的d-q平面内表示。其中: - **d** (Direct axis): 对应于转子磁通方向或定子绕组中的某一特定位置; - **q** (Quadrature axis): 垂直于d,代表与之正交的空间矢量分量; 这两个上的信号分别反映了系统的有功功率(id)和无功功率(iq),从而便于实现对电机运行状态的有效监控与控制[^2]。 #### 应用场景 在实际应用方面,dq坐标系广泛应用于永磁同步电机(PMSM)、感应电机(IMs)以及其他类型的旋转机械驱动场合。借助这一框架,工程师能够更加直观地理解并优化诸如调速、定位等功能模块的工作机制。此外,对于电力电子变流器的设计而言,采用dq模型有助于提高效率的同时降低谐波失真度,进而改善整体性能表现。 ```python import numpy as np def abc_to_dq0(a, b, c, theta): """ 将abc坐标系下的三个输入值转换为dq0坐标系 参数: a,b,c -- ABC三相输入数据 theta -- 当前角度 返回: d,q,o -- DQO坐标系输出 """ # Clarke 变换矩阵 T_clarke = np.array([[2/3, -1/3, -1/3], [0, 1/np.sqrt(3), -1/np.sqrt(3)]]) alpha_beta = T_clarke @ np.array([a,b,c]).reshape(-1,1) cos_t = np.cos(theta) sin_t = np.sin(theta) # Park 变换矩阵 T_park = np.array([[cos_t, sin_t], [-sin_t, cos_t]]) d_q = T_park @ alpha_beta return float(d_q[0]), float(d_q[1]), None # 示例参数设置 theta_example = np.pi / 4 # 随意设定的角度 example_input_a_b_c = [1., .5, -.7] # 调用函数计算结果 result_d, result_q, _ = abc_to_dq0(*example_input_a_b_c, theta=theta_example) print(f"d-axis component: {result_d:.2f}, q-axis component: {result_q:.2f}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值