目标检测之EfficientNet

本文参考以下链接,如有侵权,联系删除
参考链接
论文:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks-ICML 2019

概要

这篇ICML2019的论文对目前分类网络的优化提出更加泛化的思想,认为目前常用的加宽网络、加深网络和增加分辨率这3种常用的提升网络指标的方式之间不应该是相互独立的。因此提出了compound model scaling算法,通过综合优化网络宽度、网络深度和分辨率达到指标提升的目的,能够达到准确率指标和现有分类网络相似的情况下,大大减少模型参数量和计算量

model scaling

作者将目前分类网络的model scaling大致分为:加宽网络、加深网络和增大分辨率,也就是分别对应Figure2中的(b)、(c)、(d),这3个分别从不同的维度来做model scaling,举个例子,对ResNet网络做深度方面的model scaling可以得到ResNet50、ResNet101等不同深度的网络结构。而这篇论文要做的是将这3者结合起来一起优化,也就是(e)。
在这里插入图片描述

单个维度做scaling存在什么问题吗?

针对这个问题,作者做了Figure3这个实验,也就是针对某个分类网络的3个维度(宽度、深度和分辨率)分别做model scaling的结果对比。显然,单独优化这3个维度都能提升模型效果,但上限也比较明显,基本上在Acc达到80后提升就很小了。
在这里插入图片描述

多个维度结合做scaling效果如何?

针对这个问题,作者做了Figure4这个实验,相当于手动设置3个维度的model scaling参数。蓝色线表示的是只对宽度做model scaling的实验结果,上面的每个点表示不同宽度的网络,因此不同线条上相同顺序的点表示的网络宽度设置是一样的。可以看到,通过手动设置3个维度的model scaling参数就能有效提升模型的效果(突破80),这就说明多维度融合是有效的
在这里插入图片描述

怎么找到最优的3个维度的scaling参数?

这就是这篇文章提出的compound model scaling算法要解决的问题。
首先看看一些符号定义,在公式1中, N N N 表示分类网络, X X X 表示输入, F i F_i Fi 表示基础网络层, i i i 表示stage, L i L_i Li 表示 F i F_i Fi 结构在第 i i i 个stage中的重复数量。公式1这样的定义方式对应的最直观例子就是ResNet系列网络,我们知道ResNet系列网络有多个stage,每个stage包含不同数量的block结构。
在这里插入图片描述
那么model scaling的目标就是在模型参数和计算量满足限制条件的情况下最大化网络的准确率,也就是公式2所表达的内容,待优化的参数就是网络深度(d)、网络宽度(w)和分辨率(r)
在这里插入图片描述
为了找到满足公式2的3个维度参数,这篇论文引入Φ参数,并将3个待优化参数都用Φ指数表示,如公式3所示,同时对底做了数值限制,做限制可以减少网格搜索时的计算量,而具体的限制公式确定是为了方便计算FLOPS。这里需要说明一下d、w和r参数对FLOPS计算的影响,以卷积层为例,假如d变成原来的2倍,那么FLOPS也会变成原来的2倍;假如w变成原来的2倍,那么FLOPS就变成原来的4倍,因为输入输出通道都变成原来的2倍了,所以在计算量方面相当于4倍;r和w同理
在这里插入图片描述

baseline网络-EfficientNet-B0

准备好优化公式后,作者还通过网络结构搜索设计了一个baseline网络,也就是EfficientNet-B0,如Table1所示,网络结构比较简单,方便后续测试compound model scaling算法的效果。

在这里插入图片描述

网络优化求解

在优化求解方面,作者提出2步优化,

  • 第一步是固定Φ=1,然后通过网格搜索找到满足公式3的最优α、β、γ,比如对于EfficientNet-B0网络而言,最佳的参数分别是α=1.2、β=1.1、γ=1.15(此时得到的也就是EfficientNet-B1)。
  • 第二步是固定第一步求得的α、β、γ参数,然后用不同的Φ参数得到EfficientNet-B1到EfficientNet-B7网络,最后的实验结果如Table2所示,可以看到EfficientNet系列网络在取得和其他分类网络差不多的准确率时,参数量和计算量都很减少很多。

理论上,假如EfficientNet-B0网络是全卷积且做scale操作过程中没有小数的取整操作,那么从EfficientNet-B0到EfficientNet-B7网络的FLOPS应该是严格的2^Φ关系,但从Table2来看显然没有,主要是因为scale过程中的取整操作以及EfficientNet-B0网络并非全卷积结构
在这里插入图片描述
在最后的实验中,作者将compound model scaling算法应用在其他现有的分类模型中,发现同样有效,说明泛化效果还不错,如Table3所示。
在这里插入图片描述
在这里插入图片描述

<think>好的,用户想知道如何使用EfficientNet进行目标检测。首先,我需要回忆一下EfficientNet的基本知识。EfficientNet主要是通过复合缩放方法在深度、宽度和分辨率上均衡调整,以达到更好的准确率和效率。目标检测通常需要主干网络提取特征,然后加上检测头。所以,用户的问题应该是如何将EfficientNet作为主干网络整合到目标检测模型中,比如YOLO或其他框架。 接下来,我需要考虑具体的步骤。首先,可能需要替换现有模型的主干网络为EfficientNet。例如,在YOLO中,原本的Darknet53可以被替换成EfficientNet的不同版本。然后,需要调整特征层的输出,确保检测头能够接收到合适尺寸的特征图。此外,预训练权重的重要性,使用ImageNet上预训练的EfficientNet可以提升性能和加快收敛。 还要注意不同EfficientNet变种的选择,比如EfficientNet-Lite可能更适合边缘设备,因为它优化了推理速度。另外,特征金字塔网络(FPN)或者BiFPN的结构可能需要结合,以处理多尺度目标检测的问题。这部分可能需要参考相关论文,比如EfficientDet,它结合了EfficientNet和BiFPN。 然后,代码实现方面,用户可能需要加载预训练的EfficientNet模型,修改其顶层结构,添加检测头。例如在PyTorch中,可以截取EfficientNet的部分层作为特征提取器,然后连接自定义的检测模块。需要确保梯度是否正确传播,以及参数是否冻结等。 可能遇到的问题包括特征图尺寸不匹配,计算量过大,或者训练时的超参数调整。这时候需要参考现有的教程或代码库,比如用户提供的引用中的YOLO改进项目,可能已经实现了这样的替换,用户可以借鉴其中的方法。 最后,验证和测试部分,使用常见的目标检测数据集进行训练,评估指标如mAP,同时考虑推理速度是否满足需求。可能还需要进行模型微调,比如数据增强、学习率调整等优化策略。 总结一下,步骤包括:选择EfficientNet作为主干,调整模型结构,加载预训练权重,添加检测头,训练和优化。同时参考现有的实现和论文,确保方法正确有效。</think>### 如何使用 EfficientNet 实现目标检测 #### 1. **EfficientNet 主干网络选择** EfficientNet 通过复合缩放(深度、宽度、分辨率)优化模型效率,其变种如 $B0-B7$ 或轻量版 $Lite$ 可根据需求选择[^2]。目标检测通常采用预训练的 EfficientNet 作为主干网络(Backbone),例如替换 YOLO 的默认主干。 #### 2. **模型架构设计** - **特征提取层**:使用 EfficientNet 的中间层输出多尺度特征图(如 $C3, C4, C5$)。 - **检测头(Head)**:在主干后添加检测模块(如 YOLO 的 Head),负责预测边界框和类别。例如: $$ \text{输出} = \text{卷积层}(\text{EfficientNet特征图}) $$ - **特征融合**:引入 FPN(Feature Pyramid Network)或 BiFPN(EfficientDet 提出)融合多尺度特征。 #### 3. **代码实现示例(PyTorch)** ```python import torch from torch import nn from gen_efficientnet import efficientnet_b0 # 引用[1]中的预训练模型 class EfficientNetDetector(nn.Module): def __init__(self, num_classes): super().__init__() self.backbone = efficientnet_b0(pretrained=True) # 加载预训练主干[^1] self.fpn = nn.Sequential(...) # 自定义特征金字塔 self.head = nn.Conv2d(256, num_classes + 5, kernel_size=1) # 检测头(5: x,y,w,h,置信度) def forward(self, x): features = self.backbone.extract_features(x) # 提取多尺度特征 fused_features = self.fpn(features) return self.head(fused_features) ``` #### 4. **训练与优化** - **冻结主干**:初始训练时可冻结 EfficientNet 的底层参数,仅训练检测头。 - **数据增强**:使用 Mosaic 增强或 MixUp 提升小目标检测能力。 - **损失函数**:结合分类损失(交叉熵)和回归损失(CIoU Loss)。 #### 5. **性能评估** 在 COCO 或 VOC 数据集上测试 mAP(平均精度)和 FPS(帧率),平衡精度与速度。例如,EfficientNet-B3 + YOLOv5 的 mAP@0.5 可达 45% 以上[^2]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值