非线性系统的神经网络控制(常用介绍)--理论

本文介绍了非线性系统的神经网络控制理论,包括前馈+反馈复合控制、神经内膜控制、预测控制、自适应控制等多种控制方式,并探讨了神经网络在这些控制策略中的应用,旨在提供非线性系统控制的智能解决方案。
摘要由CSDN通过智能技术生成

非线性系统的神经网络控制–理论
参考书籍:《matlab控制系统应用与实例》清华大学出版社 樊京、刘叔军、盖晓华、崔世林编辑。
第6章:神经网络相平面分区控制
6.1.2非线性系统的神经网络控制

分类

神经网络在控制器设计中的应用一般分为两类:
一类神经控制:以神经网络为基础而形成的独立智能控制系统。
一类混合神经网络控制:利用神经网络学习和优化能力改善其他控制方法的控制。

常用的神经网络控制方式:

1、前馈+反馈复合控制

前馈控制:基于不变性原理的控制方法,可以显著提高系统的稳态精度和跟踪性能。
反馈控制:提高系统稳定性。
前馈传递函数和系统逆模型一致时,可实现理想控制。
但对于许多非线性系统而言,过程逆函数不可得,前馈控制器无法满足要求。人工神经网络可以充分逼近任意非线性函数,用其作为前馈控制器,对系统进行逆动态建模,满足不变性原理,实现跟踪控制。

2、神经内膜控制

在这里插入图片描述
只适用于开环稳定系统。

3、基于神经网络的预测控制

在这里插入图片描述
神经网络预测控制是利

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值