非线性系统的神经网络控制–理论
参考书籍:《matlab控制系统应用与实例》清华大学出版社 樊京、刘叔军、盖晓华、崔世林编辑。
第6章:神经网络相平面分区控制
6.1.2非线性系统的神经网络控制
目录
分类
神经网络在控制器设计中的应用一般分为两类:
一类神经控制:以神经网络为基础而形成的独立智能控制系统。
一类混合神经网络控制:利用神经网络学习和优化能力改善其他控制方法的控制。
常用的神经网络控制方式:
1、前馈+反馈复合控制
前馈控制:基于不变性原理的控制方法,可以显著提高系统的稳态精度和跟踪性能。
反馈控制:提高系统稳定性。
前馈传递函数和系统逆模型一致时,可实现理想控制。
但对于许多非线性系统而言,过程逆函数不可得,前馈控制器无法满足要求。人工神经网络可以充分逼近任意非线性函数,用其作为前馈控制器,对系统进行逆动态建模,满足不变性原理,实现跟踪控制。
2、神经内膜控制
只适用于开环稳定系统。
3、基于神经网络的预测控制
神经网络预测控制是利