一文带你搞懂什么是AI Agent平台

前言

前排提示,文末有大模型AGI-CSDN独家资料包哦!

最近本人在为团队负责AI Agent平台的系统化调研,本篇是【AI Agent平台】调研分析成果的第一篇。——旨在通过对AI Agent平台的基本概念、Agent平台主要功能的调研与总结,以及对国内外主流的Agent平台的简要盘点,辅助各位对【AI Agent平台】建立起一个初步的认知和印象,为各位后续详细了解感兴趣的【AI Agent平台】打下坚实的基础~

通过本文,你将了解到:

1、什么是Agent?什么是AI Agent平台?

2、AI Agent平台有什么特点,有哪些功能模块,以及要解决谁在什么场景下的什么问题?

3、了解国内、国外有哪些主流的AI Agent产品?——国内外80+ Agent平台盘点;

一、初识Agent(由来及现状浅析)

Agent一词,在人工智能领域的早期研究中,就已被用来描述能够执行任务或做出决策的程序或系统。从2023年下半年开始,Agent这个词的热度便随RAG,大模型开发框架等概念推出后一度飙升,至今依旧热度不减(由下图「百度指数」和「谷歌趋势」关于“Agent”关键词的搜索指数和趋势可以看出)。

图1-1来自百度指数(数据统计范围:2022.11.30~2024.7.17)

图1-2来自谷歌指数(数据统计范围:2023.7.16~2024.7.17)

当前Agent,在人工智能领域,通常用来指代 “决策、感知、执行于一体”的智能系统或智能应用 ,并且进行指挥和决策的“大脑”可以由各类LLM或VLM充当。

在2023年11月20日,在OpenAI首届开发者大会上推出GPTs以后, 各种类GPTs构建平台便如雨后春笋一样出现,并且功能也越来越丰富。

在AI Agent热浪下, 国内外的AI头部公司、互联网大厂以及原有RPA、企业办公(CRM、客服)业务的公司,都纷纷推出了Agent相关产品。 比如助力企业实现业务流程自动化的Beam.ai、亚马逊Bedrock Agent等,面向多种应用场景的各类AI Agent构建平台(字节扣子、智谱清言智能体中心、百度文心智能体平台、阿里百炼平台、百度智能客服产品-客悦“Agent0-1构建功能”、昆仑万维的skyAgents等。

这些Agent和GPTs, 正在悄然改变人们的工作方式,提高工作与生产效率,以及重新定义生产力。 据有关人士整理,目前单国内外的AI Agent构建平台,至少已经超过80个[1]。

图1-3 智谱AI-智谱清言-“新建智能体”产品功能截图

图1-4 文心一言智能体-产品界面截图

图1-5 百度客悦智能对话平台一2024年4月产品界面截图(1)

图1-6 百度客悦智能对话平台一2024年4月产品界面截图(2)

图1-7 钉钉AI Agent(助理)-产品界面

二、AI Agent产品特点、功能模块、使用场景介绍

前段时间,吴恩达教授在红杉资本AI Ascent的分享中提到反思(reflection)工具使用(Tool use)、规划(Planning)、多智能体协作(Multiagent collaboration) 四种AI Agent设计模式已经逐步在一些Agent构建平台实现,有的平台如Coze等已经能够支持全部四种设计模式。图2-1 字节AI智能体构建平台(Coze)-产品截图

前面说了那么多,那究竟什么是AI Agent构建平台?AI Agent平台有什么特点?有哪些功能模块?

如若你使用过几款AI Agent平台(工具)产品,你就会发现:现在的这些AI Agent构建平台,不论是产品UI界面上,还是产品功能逻辑上,都大差不差,均提供基于LLM通识能力的对话机器人构建(简单智能体构建),和基于LLM、工作流、知识库、API插件于一体的复杂Agent构建两种。

且在创建Agent应用时,用户只需要输入一段简单的智能体工作&技能相关描述,后台AI便能帮你自动生成智能体名称、头像、简介及系统提示词等内容,非常之快捷、方便,分分钟即可配好你的智能体。

图2-2(a) 智谱清言-“新建智能体”-用户输入智能体描述

图2-2(b) 智谱清言-“新建智能体”-系统据用户输入,智能生成头像、简介、技能等智能体配置信息

p.s.在当前时间节点(2024年7月23日),字节Coze、百度文心智能体、智谱AI-智谱清言均早已实现“一句话描述智能体,AI自动生成配置”,而腾讯元器(腾讯的智能体平台)还暂未实现,还需要用户手动输入头像&名称这些信息,否则无法创建成功。

2.1 基于LLM通识能力,快速构建chatbot

  • 适用场景: 适用于仅依照LLM通识能力,通过设定好LLM系统提示词(人设&工作内容&温度值等参数)就可以实现业务需求的场景,如“美食推荐专家”、“智能沟通专家”、“冷笑话专家”、“知识百科小助手”等等;

图2-3 字节Coze新建智能体(test-bot)

2.2 基于知识库&插件&工作流,构建复杂智能体

  • 适用场景

    如果需要访问企业/个人知识库、或调用一些额外的API插件来实现业务需求,则需要配置好相应的插件(如网络爬虫API、xxx数据库查询与数据统计API、天气查询API、航班查询API等等)、知识库数据库访问API等。

    另外,若有高阶需求,比如需要根据不同的业务触发条件执行对应的sop,则还需要配置工作流。

    ——当前阶段,一般的Agent平台,均提供“画布拖拽式”的工作流搭建功能。在你的工作流中,你可以选择让LLM参与任务,也可以选择不参与,此时LLM就相当于一个组件而已。如下是目前两款主流的AI Agent平台的AI Agent-工作流搭建的产品截图:

图2-4 字节Coze-工作流配置页面

图2-5 Dify-工作流配置页面

三、国内外AI Agent产品盘点

下面给出行内有关人士整理(+个人补充)的海内外AI Agent平台盘点名单,包括68个海外AI Agent构建平台和 21个国内AI Agent平台 产品名称及介绍,老师们可根据产品名称自行搜索体验,建议从互联网大厂、AI独角兽厂商的产品开始使用体验。

3.1 68款 海外AI Agent构建平台盘点及简要介绍

图3-1 海外AI Agent平台构建

图3-2 SignalWire Agent平台构建

3.2 21款 国内AI Agent构建平台盘点


图3-3 海外AI Agent平台构建

除此之外,还有百度智能客服-客悦平台、简易云的语聚AI产品等,也支持AI Agent构建。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 关于AI代理在移动设备上的实现 #### 移动端AI代理的特点与优势 移动端的AI代理旨在通过自动化重复性任务来提高效率和用户体验。这类代理能够利用移动设备内置的各种传感器数据,如加速度计、陀螺仪以及GPS等,从而更好地理解用户的上下文环境并作出相应反应[^1]。 #### 实现技术要点 为了使AI代理能够在资源受限的环境中有效运行,在设计时需考虑以下几个方面: - **轻量化模型**:由于手机内存有限且处理能力相对较低,采用压缩后的神经网络结构或是专门针对边缘计算优化过的算法变得至关重要。 - **本地化部署**:尽可能多地将功能实现在终端侧而非依赖云端服务,这不仅减少了延迟还保护了隐私安全。 - **高效能硬件支持**:现代智能手机通常配备有专用的人工智能协处理器(例如苹果A系列芯片中的Neural Engine),这些组件可以在不显著增加功耗的情况下大幅提升特定类型运算的速度[^3]。 #### 应用案例分析 Beam是一款专注于自动执行日常事务的应用程序实例;它可以通过学习用户习惯来自动生成日程安排建议或者提醒事项。此外,《Detecting Job Promotion in Information Workers Using Mobile Sensing》一文中提到的研究表明,借助移动感应技术和机器学习方法可以从行为模式变化中预测员工的职业晋升情况,这也展示了AI代理如何深入理解和响应个人生活场景的能力[^2]。 ```python import tensorflow as tf from tensorflow.keras import layers, models def create_lite_model(input_shape=(None,), num_classes=2): model = models.Sequential([ layers.InputLayer(input_shape=input_shape), layers.Dense(64, activation='relu'), layers.Dropout(0.5), layers.Dense(num_classes, activation='softmax') ]) converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() with open('model.tflite', 'wb') as f: f.write(tflite_model) create_lite_model() ``` 此代码片段展示了一个简单的TensorFlow Lite模型创建过程,该模型经过简化后适合部署至移动平台使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值