pytorch(9)-- 利用resnet18使cifa10数据集达到95%准确率

一、前言

       本文尝试使用resnet18训练测试cifa10数据集,尽可能取得较高的准确率,直接使用只能达到83%左右的准确率,关键在于使用预训练模型,在trainsform中 ,将数据resize 到 224,224 , 加入随机上下左右翻转数据增强,再使用imagnet的均值方差做归一化。

二、代码

# -*- coding: utf-8 -*-
"""
Created on Tue Feb  8 09:53:54 2022

trainval.py

"""

import torch
import torchvision
import torchvision.transforms as transforms

import argparse,os
from torch import optim
import torch.nn as nn
import torch.nn.functional as F

from torchvision.models.resnet import resnet18

#关键就在这里
transform_train = transforms.Compose(
    [
     transforms.Resize((224, 224)),
     transforms.RandomHorizontalFlip(p=0.5),
    transforms.ToTensor(),
     transforms.Normalize(  (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)   )])

transform = transforms.Compose(
    [ transforms.Resize((224, 224)),
     transforms.ToTensor(),
     transforms.Normalize( (0.485, 0.456, 0.406), (0.229, 0.224, 0.225)  )])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)

def train(args, net, device, train_loader, optimizer, epoch ,scheduler):
    running_loss = 0.0  # 初始化loss
    correct = 0.
    
    batch_num = 0
    #重点注意,训练时如果用到Batch Normalization 和 Dropout,就要在训练时使用net.train(),测试时用net.eval(),否则则不用
    net.train() 
    criterion = nn.CrossEntropyLoss() #nn的函数是要先创建,后初始化
    
    
    #开始数据机加载batch
    for batch_idx, (inputs, labels) in enumerate(train_loader, 0):
        # 输入数据上传
       
        inputs = inputs.to(device)
        labels = labels.to(device)

        # 梯度清零
        optimizer.zero_grad()

        # forward + backward
        outputs = net(inputs) 
        
         
        loss = criterion( outputs, labels )
        loss.backward()
        running_loss += loss.item()
        batch_num +=1
        
        pred = outputs.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
        correct += pred.eq(labels.view_as(pred)).sum().item()
         
        # 更新参数
        optimizer.step()
        
               
        if batch_idx % args.log_interval == 0: #每args.log_interval个批次输出一次loss
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, (batch_idx+1)*len(inputs), len(train_loader.dataset),
                       100*(batch_idx+1)*len(inputs)/ len(train_loader.dataset), running_loss/( batch_idx+1)  ) )
    scheduler.step()        

def test(args, net, device, test_loader,train_loader, epoch ):
    net.eval()  #用到Batch Normalization 和 Dropout 就要加上
    test_loss = 0
    correct = 0
    criterion = nn.CrossEntropyLoss()  # nn的函数是要先创建,后初始化
    with torch.no_grad():
        for data, label in test_loader: #不会做反向求导
            data, label = data.to(device), label.to(device)
            output = net(data) 
            
            test_loss +=  F.cross_entropy(output, label, reduction='sum').item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct += pred.eq(label.view_as(pred)).sum().item()

        test_loss /= len(test_loader.dataset)

        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))

def main():
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=64, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=6, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=1000, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=True,
                        help='For Saving the current Model')
    #获取参数
    args = parser.parse_args()
    
    # 先来判断是否要用cuda,默认是有的话就用

    torch.manual_seed(args.seed) #阈值随机设置
    use_cuda = not args.no_cuda and torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")

    #准备数据加载器
    kwargs = {'num_workers': 0, 'pin_memory': True} if use_cuda else {}
    
    train_loader = torch.utils.data.DataLoader(trainset, batch_size= args.batch_size  , shuffle=True,  **kwargs )
    test_loader = torch.utils.data.DataLoader(testset, batch_size= args.test_batch_size , shuffle=False,  **kwargs )         
    
    #初始化net,训练和验证都需要net
    net = resnet18(pretrained=False)
    net.load_state_dict( torch.load( "resnet18-5c106cde.pth" ) ) # 加载官方预训练模型,6个epoch 95.26%
    
    inchannel = net.fc.in_features
    net.fc = nn.Linear(inchannel, 10)
    
    net = net.to(device)
    
    print( "Create Net:",net )                                        


    #初始化optimizer,只有train时使用
    optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 30 , gamma=0.5)

    #开始迭代训练
    for epoch in range(args.epochs):
        
        train(args, net, device, train_loader, optimizer, epoch , scheduler )
        test(args, net, device, test_loader,train_loader, epoch  ) #不需要optimizer     

    if (args.save_model):
        torch.save(net.state_dict(), "./cnn_resnet18.pth") # 不使用state_dict(),则将模型结构和权重一起保存


if __name__ =="__main__":
    main()

运行该训练代码,在6个epoch可得到10000张测试集95%+准确率

     如果加上注意力机制(通道注意力+空间注意力),不知效果如何,有空再实验

ResNet是一种非常强大的卷积神经网络,它在训练图像分类任务中表现出色。CIFAR-10是一个经典的图像分类数据集,它由10个类别的60000张32x32像素的彩色图像组成。下面是如何使用ResNet训练CIFAR-10数据集: 1. 准备数据集:首先,需要下载CIFAR-10数据集并将其分为训练集和测试集。可以使用PyTorch中的DataLoader类来加载数据集并进行数据增强。 2. 准备模型:可以使用PyTorch中的预训练的ResNet模型,也可以自己构建一个ResNet模型。建议使用PyTorch的nn.Module类来定义模型,并使用nn.Sequential类将其组合成一个完整的模型。 3. 定义损失函数和优化器:对于图像分类问题,常用的损失函数是交叉熵损失。可以使用PyTorch中的CrossEntropyLoss类来定义损失函数。优化器可以选择Adam或SGD等常用的优化器。 4. 训练模型:使用PyTorch中的nn.Module类的train()方法来训练模型。在训练过程中,可以使用PyTorch中的torch.no_grad()上下文管理器来禁用梯度计算,以减少内存占用。 5. 评估模型:使用测试集对训练好的模型进行评估。可以使用PyTorch中的nn.Module类的eval()方法将模型设置为评估模式。在评估过程中,可以使用PyTorch中的torch.no_grad()上下文管理器来禁用梯度计算,以减少内存占用。 6. 调整超参数:可以通过调整超参数来改善模型性能。常用的超参数包括学习率、批量大小和训练周期等。 总之,使用ResNet训练CIFAR-10数据集需要一些准备工作,但是在PyTorch中实现起来非常简单。可以根据自己的需求和实际情况进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值