介绍
何恺明大神
152层网络的RESNET在IMAGENET中获得3%的误差。
提出了残差映射,通过跳跃连接进行残差学习,解决了梯度消失的问题,学习H(x)-x比学习H(x)更简单
在设计很深的残差网络中,可以使用bottle neck,谨慎使用,会导致模型退化
影响
指出,深度神经网络很难训练,会出现以下问题
梯度消失和梯度爆炸——正则化可以解决
模型退化——?
网络加深后,训练效果好得明显
利用残差学习,使得深度网络的训练不再特别困难
何恺明大神
152层网络的RESNET在IMAGENET中获得3%的误差。
提出了残差映射,通过跳跃连接进行残差学习,解决了梯度消失的问题,学习H(x)-x比学习H(x)更简单
在设计很深的残差网络中,可以使用bottle neck,谨慎使用,会导致模型退化
指出,深度神经网络很难训练,会出现以下问题
梯度消失和梯度爆炸——正则化可以解决
模型退化——?
网络加深后,训练效果好得明显
利用残差学习,使得深度网络的训练不再特别困难