2021-05-21 RESNET重点

介绍

何恺明大神

152层网络的RESNET在IMAGENET中获得3%的误差。

提出了残差映射,通过跳跃连接进行残差学习,解决了梯度消失的问题,学习H(x)-x比学习H(x)更简单

在设计很深的残差网络中,可以使用bottle neck,谨慎使用,会导致模型退化

影响

指出,深度神经网络很难训练,会出现以下问题

梯度消失和梯度爆炸——正则化可以解决

模型退化——?

网络加深后,训练效果好得明显

利用残差学习,使得深度网络的训练不再特别困难

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值