DID:仅有几个实验组样本的倍分法(双重差分)

本文探讨了在使用Difference-in-Differences (DID)方法时,处理组数量较少情况下如何影响估计结果。通过Conley和Taber的方法,利用控制组信息进行估计,以应对小样本挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:https://www.lianxh.cn/news/c1c8700574729.html


目录


 1. 简介

在之前「倍分法DID」专题中,我们已经详细介绍过 DID 方法的使用和操作细节。本推文主要目的是,讨论该方法在使用过程中,当受外生冲击的处理组数量较少时,会对估计结果产生什么影响、以及应该如何处理。

我们使用  来表示处理组的个数, 表示控制组(不受外生冲击的影响)的个数。一般而言,我们在使用 DID 估计中都会要求样本量足够大,这样估计出来的系数则更有效。但即使是大样本,也会出现受外生冲击的处理组  较小的情况。

在此情况下,用于大样本的近似统计推断是不合适的。借鉴 Conley 和 Taber (2011),我们可以使用来自  个控制组的信息来一致地估计点估计量的分布,进而得到参数的真实值。

全文阅读:https://www.lianxh.cn/news/c1c8700574729.html

PSM-DID即Propensity Score Matching and Difference-in-Differences,是一种结合了倾向得分匹配(PSM)双重差分(DID)两种方法的技术,在经济学和社会科学领域被广泛应用于评估项目干预效果或政策变化的影响。 ### 倾向得分匹配 (PSM) 这种方法用来解决样本选择偏的问题。当研究对象不是随机分配给处理组和对照组时可能出现这种偏。通过估计一个单位接受治疗的概率——这个概率被称为倾向得分,可以创建出更相似的比较群体来减少混淆因素带来的影响。 ### 双重差分 (DID) 此方法旨在衡量随时间推移而发生的事件对特定群体的效果。它利用的是实验前后的数据对比以及受试者之间是否存在显著异的信息。具体来说,就是计算处理前后两期的变化量之,并将其归因为所考察的因素。 ### PSM-DID 结合应用 两者结合起来能够更好地控制不可观测的选择效应和其他混杂变量。先用PSM找到最接近实际条件下的配对案例,之后再运用DID去测量这些经过筛选的数据点之间的长期趋势变动情况。这样不仅可以提高估计精度还可以增强因果关系解释力。 #### 实现方式 实现PSM-DID通常需要借助统计软件包完成,例如Stata、R或其他支持高级计量分析功能的语言环境。以下是简化的流程概述: - 收集并整理好包括协变量在内的面板数据; - 利用Logistic回归或者其他分类算法构建倾向分数模型以预测个体属于哪个群组的可能性; - 对照组中寻找与处理组成员具有相同或相近倾向值的对象形成匹配集合; - 报告最终的结果同时考虑进行敏感度测试确保结论稳定可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值