最近在工作中,遇到一个场景,在可能存在多种影响原因的情况下,怎样测算出某一个原因对结果的影响。
通过请教得知因果推断模型就是主要解决我所遇到的这类问题,故对其中双重差分法总结
双重差分法DID(difference-in-differences):
概述:
自然实验是通过观察实验和外生冲击,找到类似随机对照实验的环境,而日常事件自然灾害,政策制定等很难找到可 视为自然实验的环境,所以Heckman等1985年提出双重差分法,最早将该方法用于公共政策效应评估。
基本思想:
双重差分法可以理解为对随机分配实验的一种模拟,在没有随机实验的情况下去验证因果关系。
实现步骤:
-
分组:对于一个自然实验,其将全部的样本数据分为两组:一组是受到干预影响,即实验组;另一组是没有受到同一干预影响,即对照组;
-
目标选定:选定一个需要观测的目标指标;
-
第一次差分:分别对在干预前后进行两次差分(相减)得到两组差值,代表实验组与对照组在干预前后分别的相对关系;
-
第二次差分:对两组差值进行第二次差分,从而消除实验组与对照组原生的差异,最终