因果推断丨双重差分法

本文介绍了双重差分法(DID)作为因果推断模型的应用,主要用于评估公共政策或其他干预措施的效果。DID通过比较实验组和对照组在干预前后的差异来消除自然趋势和回归平均的影响,从而估算净效应。文中以珠宝店广告投放为例,展示了DID方法的实施步骤,强调其成立的前提是干预前的趋势平行及无其他干扰因素。
摘要由CSDN通过智能技术生成

最近在工作中,遇到一个场景,在可能存在多种影响原因的情况下,怎样测算出某一个原因对结果的影响。

通过请教得知因果推断模型就是主要解决我所遇到的这类问题,故对其中双重差分法总结

双重差分法DID(difference-in-differences):

概述:

自然实验是通过观察实验和外生冲击,找到类似随机对照实验的环境,而日常事件自然灾害,政策制定等很难找到可 视为自然实验的环境,所以Heckman等1985年提出双重差分法,最早将该方法用于公共政策效应评估。

基本思想:

双重差分法可以理解为对随机分配实验的一种模拟,在没有随机实验的情况下去验证因果关系。

实现步骤:

  1. 分组:对于一个自然实验,其将全部的样本数据分为两组:一组是受到干预影响,即实验组;另一组是没有受到同一干预影响,即对照组;

  2. 目标选定:选定一个需要观测的目标指标;

  3. 第一次差分:分别对在干预前后进行两次差分(相减)得到两组差值,代表实验组与对照组在干预前后分别的相对关系;

  4. 第二次差分:对两组差值进行第二次差分,从而消除实验组与对照组原生的差异,最终

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值