作者:丁海 (华中科技大学)
2019暑期“实证研究方法与经典论文”专题班-连玉君-江艇主讲
倾向得分匹配分析 (PSM) 已经在诸多领域得到了应用。虽然 PSM 不能完全解决内生性问题,但却能在很大程度上缓解自我选择问题导致的偏差。在前期文献中,Becker & Ichino (2002, Stata Journal, 2(4):358-377) 对 PSM 的分析过程进行了详细的介绍,Stata 中也有多个命令可以执行 PSM 分析,如 pscore
, psmatch2
, treatrew
(Stata Journal, 14(3): 541-561), gpscore
(SJ 8(3):354–373), kmatch
net describe st0328, from(http://www.stata-journal.com/software/sj14-1)
平衡性假设
在 PSM 匹配时,用treat变量对控制变量进行Logit回归,得到倾向得分值。倾向得分值最接近的控制组个体即为实验组的配对样本,通过这种方法可以最大程度减少实验组与控制组个体存在的系统性差异,从而减少估计偏误。在进行PSM匹配后的其他估计前比如PSM-DID 估计前,还需进行协变量的平衡性假设检验,即匹配后各变量在实验组和控制组之间是否变得平衡,也就是说实验组和控制组协变量的均值在匹配后是否具有显著差异。如果不存在显著差异,则支持进一步的模型估计。
在平衡性检验之前,我们先使用psmatch2
命令进行PSM匹配,处理变量为train,协变量为age、educ、black,结果变量为re78,采用一对一近邻匹配,具体操作如下:
use ldw_exper.dta,clear
psmatch2 train age educ black, out(re78) logit ate neighbor(1) common caliper(.05) ties
PSM 匹配完成之后,我们需要检验匹配后的样本是否满足平衡性假设,即实验组与控制组的匹配协变量是否没有显著性差异,在这里可以使用pstest
命令进行检验,具体如下:
pstest age educ black hisp married , t(train)
平衡性假设检验结果如下:
------------------------------------------------------------------------------
| Mean | t-test | V(T)/
Variable | Treated Control %bias | t p>|t| | V(C)
------------------------+--------------------------+---------------+----------
age | 25.527 24.714 11.4 | 1.19 0.234 | 1.24
educ | 10.291 10.401 -6.0 | -0.59 0.557 | 1.60*
black | .84066 .87363 -8.9 | -0.90 0.370 | .
hisp | .06044 .09066 -10.9 | -1.09 0.277 | .
married | .18681 .1522 9.2 | 0.88 0.380 | .
------------------------------------------------------------------------------
根据t检验结果发现,以上5个协变量在实验组与控制组之间不存在显著性差异。
那么,在进行 PSM 分析之前,应当如何选择匹配协变量,使模型实现最佳的拟合效果呢?今天介绍的 psestimate
命令可以通过比较不同模型的极大似然值,帮助我们选择能实现最佳拟合效果的协变量的一阶和二阶形式。
The psestimate
command estimates the propensity score proposed by