记录mmdetection安装过程,网络环境好久就选择在线安装,记录离线安装是因为超算网络环境太恶劣…
安装版本
版本 | |
---|---|
python | 3.10 |
pytorch | 2.1.0(cuda11.8) |
mmcv | 2.1.0 |
mmdetection | git下载安装即可 |
在线安装版
虚拟环境:
conda create -n mmdet python=3.10
conda activate mmdet
pytorch:使用2.3.0折腾了好一会,然后退回到了2.1.0
# cuda11.8
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=11.8 -c pytorch -c nvidia
使用pip安装mmcv:mmcv2.1.0
pip install -U openmim
pip install mmengine
pip install mmcv==2.1.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.1/index.html
安装mmdetection:
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -v -e .
验证安装:
from mmdet.apis import DetInferencer
# 初始化模型
inferencer = DetInferencer('rtmdet_tiny_8xb32-300e_coco')
# 推理示例图片
inferencer('../demo/demo.jpg', out_dir='outputs/', no_save_pred=False)
离线安装版
虚拟环境:
conda create -n mmdet python=3.10
conda activate mmdet
pytorch:
# CUDA 11.8
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
# CUDA 12.1
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121
安装cuda11.8版本,去官网指定地址https://download.pytorch.org/whl/cu118下载.whl安装文件:torch==2.1.0
、torchvision==0.16.0
、torchaudio==2.1.0
注意安装gpu版本:
torch-2.1.0+cu118-cp310-cp310-linux_x86_64.whl
torchvision-0.16.0+cu118-cp310-cp310-linux_x86_64.whl
torchaudio-2.1.0+cu118-cp310-cp310-linux_x86_64.whl
安装 pip install torch*
使用pip安装mmcv:mmcv2.1.0
pip install -U openmim
pip install mmengine
pip install mmcv==2.1.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.1/index.html
去官网指定下载地址https://download.openmmlab.com/mmcv/dist/cu118/torch2.1/index.html下载对应版本mmcv:
mmcv-2.1.0-cp310-cp310-manylinux1_x86_64.whl
安装:pip install mmcv-2.1.0-cp310-cp310-manylinux1_x86_64.whl
安装mmdetection:
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -v -e .
验证安装:
from mmdet.apis import DetInferencer
# 初始化模型
inferencer = DetInferencer('rtmdet_tiny_8xb32-300e_coco')
# 推理示例图片
inferencer('../demo/demo.jpg', out_dir='outputs/', no_save_pred=False)