极大似然估计

背景:抛硬币10011,xi~B(1,a)

        xi~B(n,p)二项式分布,即事件发生的概率为p,重复n次。n个独立的成功/失败试验中成功的次数的离散概率分布

我们求正面概率a,不知道,当时我们抛了硬币可反推a。

p=a(1-a)(1-a)aa=a^3(1-a)^2

这个形式是近似 似然函数的形式L ( \theta ) = P ( X _ { 1 } = x _ { 1 } | \theta ) ....P ( X _ { n } = x _ { n } | \theta ) = \prod _ { i = 1 } ^ { n } \theta ^ { x _ { i } } ( 1 - \theta ) ^ { 1 - x _ { i } }

为什么Ln()处理:

        1.防止下溢出

        2.Ln(x1x2x3...)=Lnx1+Lnx2+Lnx3+...

        对这个Ln处理后直接变成加法:

        L ( \theta ) = P ( X _ { 1 } = x _ { 1 } | \theta ) ....P ( X _ { n } = x _ { n } | \theta ) = \prod _ { i = 1 } ^ { n } \theta ^ { x _ { i } } ( 1 - \theta ) ^ { 1 - x _ { i } }

        3.Lna^x=xLna.可以进一步化简。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值