(2)大模型开发技术栈

2.1  深度学习框架

开发大型神经网络模型通常需要使用深度学习框架来构建、训练和部署模型。在本节的内容中,将简要介绍一些主要的深度学习框架,它们在开发大型模型时非常有用。

2.1.1  TensorFlow

TensorFlow是一个由Google开发的深度学习框架,用于构建、训练和部署机器学习和深度学习模型。TensorFlow具有以下特点和作用:

  1. 开源性质:TensorFlow是一个开源框架,可以免费使用,它具有广泛的社区支持,因此可以获得丰富的资源和工具。
  2. 灵活性:TensorFlow支持多种硬件和平台,包括CPU、GPU和TPU(Tensor Processing Unit),
模型表达通常是指使用大规模预训练语言模型来进行文本生成、理解或对话交互的过程,这些模型如GPT-3、通义千问等,能够根据输入的提示进行复杂的语义理解和生成高质量的内容。在技术上,大模型表达可能涉及到自然语言处理(NLP)和深度学习技术。 前后端开发技术栈主要包括以下几个关键部分: 1. 前端技术: - HTML/CSS: 前端的基础结构和样式,分别用于描述网页内容和视觉呈现。 - JavaScript: 动态网页的核心,负责交互和数据处理。 - React, Angular, Vue: 框架,帮助开发者构建可复用组件和管理状态。 - Axios or Fetch: 发送HTTP请求,实现与后端通信。 - UI库:如Bootstrap, Ant Design, Material-UI, 用于快速构建美观的界面。 2. 后端技术: - Node.js: 使用JavaScript开发服务器端应用,搭配Express等框架。 - Java, Python, Ruby: 常见的后端编程语言,有Spring Boot, Django, Flask等框架。 - RESTful API设计: 设计数据接口,让前端能访问和操作数据。 - GraphQL: 可选的查询语言,提供更灵活的数据获取方式。 - ORM (如Hibernate, SQLAlchemy): 数据库操作的抽象层,简化数据操作。 - 后端框架: Express (Node), Django REST framework (Python), Rails (Ruby) 等。 3. 其他相关技术: - 安全:HTTPS, JWT, OAuth2等用于数据传输安全。 - 数据库:MySQL, PostgreSQL, MongoDB等关系型和非关系型数据库。 - API Gateway: 如AWS API Gateway,用于统一管理和授权API访问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值