大模型技术栈-算法与原理 tokenizer方法 position encoding 位置编码 注意力机制 分布式训练 Prompt Engineering 微调 压缩 剪枝 量化 embeddin

大模型技术栈-算法与原理

1. tokenizer方法

  • word-level
  • char-level
  • subword-level
    • BPE
    • WordPiece
    • UniLM
    • SentencePiece
    • ByteBPE

大模型技术栈中的算法与原理涉及多个方面,其中Tokenizer方法是大模型处理文本数据的关键步骤之一。Tokenizer负责将原始文本转化为模型能够理解的数值表示形式,其方法的选择直接影响到模型的性能和效率。以下是对word-level、char-level以及subword-level中的多种Tokenizer方法的介绍:

Word-level Tokenizer

Word-level Tokenizer是最直观的方法,它将每个单词作为独立的标记。这种方法简单易懂,但存在一些问题。例如,对于未登录词(OOV,Out-Of-Vocabulary)和罕见词的处理较为困难,且不同语言、不同领域之间的词汇差异较大,这会影响模型的泛化能力。

Char-level Tokenizer

Char-level Tokenizer将每个字符作为独立的标记。这种方法能够处理任何文本,包括未登录词和特殊符号,但由于序列长度大幅增加,计算成本较高,且难以捕获到词汇级别的语义信息。

Subword-level Tokenizer

Subword-level Tokenizer旨在找到一个平衡点,既能处理OOV问题,又能保持一定的计算效率。以下是几种常用的Subword Tokenizer方法:

BPE (Byte Pair Encoding):

BPE是一种基于统计的编码方法。它初始时将每个字符视为一个子词单元,然后统计相邻子词单元出现的频率,选择最高频的相邻子词单元进行合并,形成一个新的子词单元。这个过程不断迭代,直到达到预设的子词单元数量或迭代次数。BPE可以有效处理OOV问题,并且生成的子词单元数量相对较少,计算效率较高。

WordPiece:

WordPiece是Google提出的一种基于语言模型的子词分割算法。它选择使得语言模型概率最大的相邻字符对进行合并,以生成子词单元。与BPE不同,WordPiece考虑了语言模型的概率分布,因此生成的子词单元更符合语言的实际使用情况。

UniLM (Unigram Language Model):

UniLM是一种基于统计的分词方法,它可以输出带概率的多个子词分段。UniLM采用了一种贪心搜索策略,从最长的可能子词单元开始,逐步缩短长度,选择概率最大的子词单元作为分割结果。这种方法能够生成多种可能的分词结果,提高模型的鲁棒性和泛化能力。

SentencePiece:

SentencePiece是Google的另一个开源工具,用于文本的分词。它可以处理任意语言的文本,并生成固定大小的子词单元。SentencePiece结合了BPE和Unigram Language Model的优点,能够处理OOV问题,同时保持较高的计算效率。

ByteBPE:

ByteBPE是BPE的一种变体,它使用字节而不是字符作为基本单位。这种方法可以覆盖所有的Unicode字符,无需考虑编码问题。然而,由于它增加了序列的长度,可能会增加模型的计算开销。

在选择Tokenizer方法时,需要根据具体任务、数据集和模型特点进行权衡。不同的Tokenizer方法会对模型的性能、效率和泛化能力产生影响,因此需要根据实际情况进行选择和优化。

2. position encoding

  • 绝对位置编码
    • ROPE
    • AliBi
  • 相对位置编码
    • Transformer-XL
    • T5/TUPE
    • DeBERTa
  • 其他位置编码

大模型技术栈中的算法与原理部分,位置编码(Position Encoding)是一个关键组件,它帮助模型理解序列中元素的位置信息。以下是对不同位置编码方法的介绍:

绝对位置编码

绝对位置编码为序列中的每个位置分配一个唯一的编码,这些编码通常是固定的或基于规则的。

ROPE:这是一种目前开源社区应用广泛的位置编码方案。ROPE(Rotary Position Encoding)通过旋转嵌入向量来捕获位置信息,能够更好地处理序列长度变化,对插入和删除操作更鲁棒,能够捕捉序列中的相对顺序,并提高模型的泛化能力。

AliBi:关于AliBi的具体实现和原理,目前我暂未了解到详细信息。但一般来说,绝对位置编码方法可能通过某种方式将位置信息直接融入到模型的输入中,以便模型能够考虑到序列中元素的位置。
相对位置编码

相对位置编码关注序列中元素之间的相对位置关系,而不是它们在序列中的绝对位置。

Transformer-XL:Transformer-XL在vanilla Transformer的基础上引入了循环机制和相对位置编码。相对位置编码使得Transformer-XL能够处理超过固定长度的上下文,并克服了Vanilla Transformer的一些缺点,如上下文长度受限和上下文碎片问题。

T5/TUPE:T5(Text-to-Text Transfer Transformer)和TUPE(Tuple-based Position Encoding)是两种使用相对位置编码的方法。它们通过不同的方式将相对位置信息整合到模型中,以改进序列建模的效果。

DeBERTa:DeBERTa(Decoding-enhanced BERT with disentangled attention)是一种改进的BERT模型,它使用相对位置编码来增强模型的表示能力。通过考虑元素之间的相对位置关系,DeBERTa能够更好地捕捉序列中的依赖关系。
其他位置编码

除了上述的绝对位置编码和相对位置编码,还有一些其他的位置编码方法。这些方法可能结合了绝对和相对位置编码的思想,或者采用了全新的方式来编码位置信息。然而,具体的实现和原理可能因不同的研究或应用而有所差异。

3. 注意力机制

- 稀疏注意力
- flash-attention

大模型技术栈中的算法与原理部分,注意力机制(Attention Mechanism)是一个核心概念,它帮助模型在处理大量信息时,能够聚焦于关键部分,提高模型的性能和效率。以下是关于稀疏注意力和Flash-Attention的详细介绍:

稀疏注意力机制

稀疏注意力机制是一种通过对输入信号进行加权,使得网络在关注重要部分的同时较少关注无关信息的方法。它通过生成注意力权重并应用这些权重来连接不同部分的输入信息,从而突出关键信息并抑制无关信息。稀疏注意力机制的核心在于如何确定哪些部分是重要的,哪些部分是无关紧要的。

在稀疏注意力机制中,通常会采用一些方法来计算注意力权重,如全局平均池化、自注意力或特定的注意力机制网络等。这些权重反映了不同部分输入信息对于模型输出的重要程度。然后,通过将这些权重与对应的输入信息进行加权连接,模型能够更专注于关键信息,从而提高目标检测的准确性和性能。

Flash-Attention

Flash-Attention是一种特殊的注意力机制,它受到人类视觉系统中对闪烁刺激的敏感性的启发。在心理学研究中,人们发现人类对于亮度和颜色的变化非常敏感,而对静止不动的物体相对不敏感。基于这一原理,Flash-Attention通过在界面中添加闪烁的光点或颜色变化等元素,来吸引用户的视觉注意。

在深度学习和大模型技术中,Flash-Attention可以被用于突出关键信息或提示重要事件。例如,在广告推广中,可以通过闪烁的广告位来吸引用户的注意力,提高广告的点击率和转化率。同样,在重要信息提示、导航引导、游戏设计以及用户反馈等方面,Flash-Attention也可以发挥重要作用。通过闪烁或颜色变化,模型可以引导用户关注特定信息,提高用户的使用体验和满意度。

稀疏注意力和Flash-Attention都是注意力机制的重要实现方式,它们能够帮助模型在处理大量信息时聚焦于关键部分,提高模型的性能和效率。在实际应用中,可以根据具体任务和数据集的特点来选择合适的注意力机制方法,并进行优化和调整。

4. 分布式训练

大模型技术栈中的算法与原理部分,分布式训练是一个关键的技术领域,它允许模型在多个计算节点上进行并行训练,从而显著提高训练速度和效率。以下是关于数据并行、模型并行(包括tensor-wise parallelism和流水线并行)的详细介绍:

数据并行

数据并行是一种常见的分布式训练方式,它将一份数据集分成多个子集,每个子集分配给一个不同的计算节点进行训练。每个节点独立地更新自己的模型参数,并通过某种方式(如平均、加权平均等)将各个节点的模型参数融合得到最终的模型。这种方式可以显著减少单节点的计算量和内存消耗,从而加速训练过程。

FSDP (Fully Sharded Data Parallel):FSDP是数据并行的一种优化方式,它通过完全分片模型参数,将每个参数分布到不同的计算节点上,以进一步减少内存消耗。在FSDP中,每个节点只负责更新自己分片上的参数,并通过通信来同步其他节点的更新。

DDP (Distributed Data Parallelism):DDP是另一种数据并行的方式,它采用Ring-AllReduce的通信方式,使得所有的GPU形成一个环形通信拓扑。在每一轮环形传递后,所有GPU都获得了数据的聚合结果,从而提高了带宽利用率和通信效率。

模型并行

模型并行则是将模型的不同部分分配到多个计算节点上,每个节点负责处理模型的一个或多个部分。这种方式可以突破单个节点的内存和计算限制,使得训练更大规模的模型成为可能。

Tensor-wise Parallelism

Megatron-LM:这是一个基于PyTorch的分布式训练框架,用于训练基于Transformer的大型语言模型。Megatron-LM综合应用了数据并行、张量并行和流水线并行等技术,其中张量并行是其模型并行的一种实现方式。它通过将模型中的张量(如权重矩阵)分割到多个节点上,实现模型参数的分布式存储和计算。
流水线并行

GPipe:GPipe是一种流水线并行的实现方式,它将模型的不同层分割到多个计算节点上,并形成一个流水线式的处理流程。每个节点负责处理模型的一个或多个层,并将输出传递给下一个节点。这种方式可以隐藏计算延迟,提高硬件利用率。

PipeDream:PipeDream是另一种流水线并行的实现,它采用了一种更灵活的调度策略,允许不同节点之间的计算重叠,从而进一步提高训练效率。
除了上述提到的并行方式外,还有layer-wise parall

  • 25
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EwenWanW

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值