Q-learning是一种强化学习算法,用于解决马尔可夫决策过程(MDP)中的问题。贝尔曼方程则是MDP的核心概念之一,与Q-learning密切相关。在本章的内容中,将详细讲解Q-learning与贝尔曼方程的知识,为读者步入后面知识的学习打下基础。
4.1 Q-learning算法原理
Q-learning是一种基于贝尔曼方程的强化学习算法,用于学习在MDP中的最优策略。Q-learning通过不断地在MDP中进行尝试和学习,逐渐收敛到最优Q值函数,从而使智能体能够选择最优策略来实现其目标。这个过程利用了贝尔曼方程来估计未来奖励的重要性,以及如何根据当前的奖励和估计的未来奖励来更新Q值。
4.1.1 Q-learning的动作值函数
Q-learning是一种强化学习算法,用于学习动作值函数(Action-Value Function)Q(s, a),也称为Q函数或Q值函数。动作值函数Q(s, a)表示在给定状态s下执行动作a所获得的期望回报(或累积奖励)。Q-learn