6.2 Lucas-Kanade算法
Lucas-Kanade光流法是最早的光流估计方法之一,基于局部的亮度一致性假设。该方法通过对灰度变化的梯度进行建模,求解一个局部的最小二乘问题,以得到光流场。
6.2.1 Lucas-Kanade介绍
Lucas-Kanade是一种经典的光流估计算法,最早由Bruce D. Lucas 和 Takeo Kanade 在1981年提出。该算法假设了光流场是稀疏的,并且利用了局部邻域内像素灰度的空间梯度信息。Lucas-Kanade算法适用于具有较小位移的像素,因此在相机和物体运动较小的情况下表现良好。实现Lucas-Kanade算法的主要步骤如下所示。
(1)确定邻域窗口:对于图像中的每个像素点,选择一个固定大小的邻域窗口(通常为3x3或5x5)。
(2)计算空间梯度:在选定的邻域窗口内,计算每个像素点的空间梯度,即计算其在x和