线代行列式、矩阵知识梳理

线代行列式、矩阵知识梳理

一、行列式

1、注意事项
  • 行列式只有n×n,没有m×n(m!=n)
  • |A+B|!=|A|+|B|
2、行列式性质
  • 转置后行列式值不变
  • 某行有公因数k,可将k提出
  • 两行互换,行列式值变号----------------------->行列式两行相同/成比例,则值为0
  • 若行列式某行每一项都是两个数的和,则可将行列式拆成两个行列式的和
  • 将某行的k倍加到另一行
3、行列式按行/列展开
###### 1.代数余子式的定义

在这里插入图片描述

###### 2.重要推论
  • 某一行的所有元素与另一行相应元素对应的代数余子式乘积之和为0
3.重要公式
  • 上三角与下三角行列式公式
  • 分块矩阵公式
  • 拉普拉斯
  • 范德蒙行列式
4、克拉默法则
# 1.齐次方程组
	若系数行列式=0      <----->  方程组有非零解(无穷多解)
	若系数行列式!=0    <----->  方程组只有0解
# 2.非齐次方程组
	系数行列式!=0 	  <----->  方程组有唯一解

二、矩阵知识

1、各种概念(同型矩阵、逆矩阵等)
# 1.同型矩阵(A=B)
	A、B均为m*n矩阵,且对应位置的元素相等,称A和B为同型矩阵,记做A=B
# 2.单位矩阵E
	主对角线元素全为1
# 3.对角矩阵
	主对角线之外的元素皆为0的矩阵
# 4.对称矩阵
	矩阵转置后不变的矩阵
# 5.反对称矩阵
	矩阵转置后为-1倍的矩阵
# 6.伴随矩阵(Aij)
	将矩阵A的第i行第j列去掉后,系数为(-1)^(i+j)的矩阵
# 7.可逆矩阵(必定是n * n的矩阵)
	若AB=E,称A是可逆的,B是A的逆矩阵且B唯一
2、矩阵四则运算
# 1.矩阵加法
	要求矩阵都是m*n的矩阵
	(A+B)+C = A+B+C
# 2.矩阵数乘
	k(mA)=m(kA)=(mk)A
	(k+m)A=kA+mA
	k(A+B)=kA+kB
# 3.矩阵乘法
	AB:A的列数=B的行数
	AB!=BA
	AB=0 推不出 A=0或B=0
	AB=AC,A!=0 推不出B=C
3、矩阵运算法则汇总

在这里插入图片描述

4、重要性质
# 1.矩阵A可逆 等价于 |A|!=0
# 2.二阶伴随矩阵:主对角线互换,次对角线负号
# 3.可逆矩阵的逆矩阵唯一

# 4.行矩阵×列矩阵是一个数 而不是一个矩阵

5、如何求可逆矩阵
# 法1、定义法
# 法2、公式法(二阶矩阵常用,因为二阶矩阵的伴随矩阵易得)
# 法3.初等行变换(只能用行变换)
	(A|E)~~~~(E,A^-1)
# 法4.分块矩阵的逆矩阵

三、初等矩阵与初等行变换

1、初等行变换
# 1.用非0常数k乘矩阵A某行的所有元素      (倍乘)
# 2.互换矩阵A的两行元素                (互换)   
# 3.将A的某行元素的k倍加到另外一行上     (倍加)
2、初等矩阵(均可逆)
# 1.定义:单位矩阵经过一次初等变换得到的矩阵
# 2.性质:设有初等矩阵P
			PA  等价于  A作一次与P相同的行变换
			AP  等价于  A作一次与P相同的列变换
# 3.初等矩阵均可逆
3、矩阵等价

​ A矩阵若可以经过有限次初等变换得到B,称二者等价。且等价矩阵的秩相等

4、分块矩阵运算解决矩阵转置、逆矩阵、n次方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值