矩阵的基础知识回顾:矩阵乘法,矩阵的逆,伴随矩阵,矩阵的转置,行列式,相似矩阵,实对称矩阵

这篇博客详细介绍了矩阵的基础知识,包括矩阵乘法、矩阵的逆、伴随矩阵的计算、矩阵的转置以及行列式的性质。特别讨论了如何通过初等变换和伴随矩阵求解矩阵的逆,还涵盖了相似矩阵和实对称矩阵的特性,如谱分解。
摘要由CSDN通过智能技术生成

1. 矩阵matrix

1.1 矩阵运算matrix operations

1.1.1 矩阵乘法matrix multiplication

这个也是我们非常熟悉的,矩阵A和B相乘要求A的列数等于B的行数。

1.1.1.1 简化矩阵乘法(facilitate computation)的方式:分块(block multiplication)

在这里插入图片描述

1.1.2 矩阵运算的一些性质some propoerties of matrix operations

  • 分配律distributive law: A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC, ( A + B ) C = A C + B C (A+B)C=AC+BC (A+B)C=AC+BC
  • 结合律associative law: A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C
  • 交换律commutative law❌

1.1.3 矩阵的逆inverse of a matrix

1.1.3.1 矩阵的逆的性质
  • 唯一性unique:矩阵的逆如果存在的话,就一定是唯一的。
  • ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1:这个proposition是经常遇到的。注意这里的矩阵都是方阵,并且假设他们都是可逆的。
1.1.3.2 如何计算矩阵的逆

一般求矩阵的逆有以下几种方法:

  • 根据定义,可以假设矩阵的逆的元素,然后去求解矩阵的逆中的元素。
  • 初等变换法:如果要求A的逆矩阵,可以写成 [ A ∣ B ] [A|B] [AB]的形式,然后对这个新的矩阵作初等行变换。目标是将A变换成单位阵,然后B最后经过初等变换后得到的C就是矩阵A的逆矩阵。有三种初等变换法
    – 某一行乘以一个非0的常数
    – 任意两行交换
    – 某一行+其他行乘以一个非0常数
    初等变换法为什么work?首先初等变换矩阵都是可逆的,我们可以写一个很简单的式子来证明为什么C是A的逆矩阵。假设我们经过 E 1 , E 2 . E 3 E_1,E_2.E_3 E1,E2.E3这三个初等变换矩阵,A变成了单位阵,那么有 E 3 E 2 E 1 A = I E_3E_2E_1A=I E3E2E1
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值