大模型名字取名的秘密

现在各种AI大模型大家应该都有了解,如:OpenAI、豆包AI、零一万物、通义千问、kimi等,但是详细了解大模型后就会发现,大模型也分很多类型和尺寸,接下来对一些大模型的名词做一个简单介绍:

我们在魔搭社区的大模型中经常会看到这样的名字,如:Qwen2-VL-2B-Instruct-GPTQ-Int4

从这个名字能看出来这个模型的哪些信息呢?

Qwen2:表明这是Qwen系列的第二代产品

VL :指的是视觉-语言(Vision-Language)或多模态能力,表示该模型不仅能够处理文本信息,还能理解和生成与图像或视频相关的内容。适用于图文匹配、视觉问答等任务

        VL模型是为了解决涉及视觉和语言的联合任务而设计的,例如图文匹配、视觉问答(VQA, Visual Question Answering)、图像字幕生成等。这类模型可以接受图像作为输入,并根据图像内容产生相应的文本输出,或者反过来,根据文本描述生成或选择合适的图像,这样的多模态模型在实际应用中可以用于更加丰富的场景,比如智能助手、内容创作工具、教育软件等,其中涉及到对图片、视频等内容的理解和交互,但同时硬件要求也更高

2B:表示模型具有20亿个参数,虽然相比一些超大型模型参数量较小,但对于许多应用来说仍然足够强大,同时更易于部署和使用

Instruct:说明这个模型是专门为指令跟随(instruction-following)任务优化的,可以较好地理解和执行具体的任务或指令,比如经过中文训练、专业知识训练等,使模型适用于特定群体或场景。

GPTQ:GPTQ指的是Groupwise Product Quantization(分组量化),这是一种高效的模型压缩技术,旨在减少模型大小并提高推理速度而不显著降低性能。

        常见的压缩技术还有AWQ(Adaptive Weight Quantization,自适应权重量化)等,AWQ是一种先进的模型压缩技术。通过AWQ,可以在减少模型大小和提高推理速度的同时尽量保持模型的准确性。AWQ根据权重的重要性自动调整量化级别,从而实现更有效的资源利用和性能优化。

        AWQ的优势在于:

        1)更高的精度保持:AWQ根据权重的重要性自动调整量化级别,这意味着它可以在减少模型大小的同时更好地保持原始模型的精度

        2)更高效的资源利用:通过自适应地分配不同的量化级别,AWQ可以更有效地利用计算资源,实现性能与准确性的最佳平衡

        3)灵活性:AWQ可以根据具体的模型架构和任务需求进行定制化优化,提供更高的灵活性

        AWQ的劣势在于:

        1)复杂度较高:由于需要对每个权重进行重要性评估并分配不同的量化级别,AWQ的实现相对复杂,可能增加开发和部署的成本

        2)计算开销:在某些情况下,AWQ可能会引入额外的计算开销,尤其是在推理阶段,因为需要处理不同量化级别的权重

Int4:这表示模型经过了4位整数(INT4)量化处理。量化是一种将模型权重从浮点数转换为较低精度整数的技术,以减少模型的存储需求和计算量。INT4量化可以极大地提升模型在资源受限设备上的运行效率,比如移动设备或边缘计算节点

        常见的量化处理位数还有INT4, INT8, INT16,固定位宽的整数量化方法,其中INT表示整数,后面的数字代表位宽(例如,INT8意味着使用8位整数来表示权重或激活值)。

        其优点相比AWQ在于:

        1)简单直接:这些方法通常实现起来比较简单,易于集成到现有的硬件和软件环境中

        2)硬件支持广泛:许多现代处理器和加速器都对INT8等常见量化格式提供了良好的硬件支持,这可以显著提高推理速度

        3)确定性强:由于使用固定的位宽,这些方法的结果更加可预测,便于调试和优化

        其缺点在于:

        1) 精度损失较大:相比于AWQ,这些固定位宽的量化方法通常会导致更多的精度损失,特别是在较低位宽(如INT4)时,可能会明显影响模型的表现

        2)灵活性不足:无法根据不同权重的重要性灵活调整量化级别,所有参数都被同等对待,可能导致资源利用不够高效

还有其他大模型名称如:通义千问Qwen2.5-72B-Instruct-GGUF-V3-LOT

通义千问Qwen2.5 表明这是通义千问系列的第2.5版,意味着它是在先前版本的基础上进行了改进或更新。

72B:表示模型具有720亿个参数,这说明它是一个非常大的模型,具备较强的表达能力和上下文理解能力。

Instruct:说明这个模型是专门为指令跟随(instruction-following)任务优化的,可以较好地理解和执行具体的任务或指令。

GGUF:GGUF指的是GPT-Generated Unified Format,这是一种优化了存储效率、加载速度和兼容性的二进制文件格式。

        除了GGUF格式,常见的大型机器学习模型文件格式还包括以下几种:

        HDF5 (.h5):一种支持大量数据和复杂数据组织形式的灵活的数据存储格式。在深度学习中,特别是使用Keras框架时,模型经常以HDF5格式存储

        Protocol Buffers (.pb):Protocol Buffers(或protobuf)是Google开发的一种语言无关、平台无关的可扩展机制,用于序列化结构化数据。TensorFlow通常使用这种格式来保存和加载模型

        ONNX (.onnx):Open Neural Network Exchange(ONNX)是一个开放格式,用于表示深度学习模型。ONNX旨在使模型可以在不同的深度学习框架之间轻松移植

        PyTorch (.pt 或 .pth):PyTorch框架通常使用其自身的序列化格式来保存模型,文件扩展名可以是.pt或.pth

        Checkpoint Files (.ckpt):TensorFlow等框架使用checkpoint文件保存模型的权重和参数,以便于训练过程中的恢复和持续训练

V3:这里可能是一个特定版本。

LOT:这里可能是“Lossless Optimization Technology”的缩写,意为无损优化技术。这可能意味着模型在保持原有性能的同时,通过某种方式实现了压缩或优化,确保推理时不会损失精度

除了上述常见的名词,模型名称的定义通常会包含一系列信息,以帮助用户快速了解模型的关键特性。除了之前提到的信息外,还可能包括以下内容:

1. 架构(Architecture):
   - 模型的基础架构,如BERT、GPT、T5等。这告诉用户模型是基于哪种基础架构构建的。

2. 训练数据集(Dataset):
   - 有时会在名称中注明模型是使用哪个数据集进行训练的,例如“Wiki”代表维基百科,“CC”代表Common Crawl。

3. 语言或领域特定(Language or Domain-specific):
   - 如果模型是针对某种特定语言或领域优化的,比如中文、法律、医疗等,可能会在名称中体现出来。

4. 微调(Fine-tuned):
   - 表明该模型是否已经针对特定任务进行了微调,例如分类、生成、问答等。

5. 多模态能力(Multimodal):
   - 对于能够处理文本以外的数据类型(如图像、音频)的模型,可能会标注其多模态能力。

6. 量化级别(Quantization Level):
   - 某些模型会在名称中指出它们的量化级别,如INT8, FP16等,表明模型经过了量化处理以减少资源消耗和提高推理速度。

7. 发布日期或版本号(Date or Version Number):
   - 一些模型会在名称中加入发布日期或者版本号,以便追踪模型的更新历史。

8. 开源状态(Open Source Status):
   - 某些模型名称可能会包含关于是否开源的信息,例如“Open”表示这是一个开放源代码的模型。

9. 许可协议(License):
   - 虽然不常见,但有时候模型名称或相关文档中也会提及使用的许可证类型,如Apache License, MIT License等。

10. 性能指标(Performance Metrics):
    - 在某些情况下,模型名称可能会包含性能指标的简写,如BLEU分数、F1值等,用于快速参考模型的表现。

11. 硬件优化(Hardware Optimization):
    - 如果模型是为特定硬件平台优化过的,例如GPU、TPU等,也可能会在名称中有所体现。

这些附加信息可以帮助用户更全面地理解模型的功能、适用范围和技术特点,从而做出更好的选择。每个开发者或组织可能会根据自己的需求和习惯来设计模型名称,因此具体包含哪些信息会有所不同。

以上就是大模型名称的“秘密”,希望对你大模型选型有所帮助!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值