Keras创建一个简单的模型

Keras创建一个模型的步骤如下:

(一)模型定义。定义模型的结构

(二)模型编译。指定损失函数和优化器,并调用模型的compile() 函数,完成模型编译

(三)训练模型。通过调用模型的fit() 函数来训练模型

(四)模型预测。调用模型的evaluate() 或者predicr() 等函数对新数据进行预测

 

定义模型的三种方法:

1.

# 方式一: 使用 .add() 方法将各层添加到模型中
# 导入相关包
from keras.models import Sequential
from keras.layers import Dense, Activation

# 选择模型,选择序贯模型(Sequential())
model = Sequential()

# 构建网络层
# 添加全连接层,输入784维,输出空间维度32
model.add(Dense(32, input_shape=(784,)))

# 添加激活层,激活函数是 relu
model.add(Activation('relu'))

# 打印模型概况
model.summary()

2.

# 方式二:网络层实例的列表构建序贯模型
# 导入相关的包
from keras.models import Sequential
from keras.layers import Dense, Activation

# 选择模型,选择序贯模型(Sequential())
# 通过将网络层实例的列表传递给 Sequential 的构造器,来创建一个 Sequential 模型
model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu')
])

# 打印模型概况
model.summary()

 

3.

# 方式三:函数式模型
# 导入相关的包
from keras.layers import Input, Dense,Activation
from keras.models import Model

# 输入层,返回一个张量 tensor
inputs = Input(shape=(784,))

# 全连接层,返回一个张量
output_1 = Dense(32)(inputs)

# 激活函数层
predictions= Activation(activation='relu')(output_1)

# 创建一个模型,包含输入层、全连接层和激活层
model = Model(inputs=inputs, outputs=predictions)

# 打印模型概况
model.summary()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值