Type I error产生的原理
理论部分
参考(Research Methods in Human-Computer Interaction)
总结
一类误差产生于统计分析的概率特性,概率上任何事件都会存在误差,因此会有A与B在95%的概率置信水平上存在显著差异的说法,一类误差和二类误差描述的是这个结论出错的概率。
实用分析
实际的HCI假设检验过程:
- 假设存在显著差异
- 设计实验
- 采集结果
- 数据分析
- 得出结论
关键点:
- 实际使用的假设其实是理论推导过程的H1假设,即假设存在差异,而非是没有差异.
- 一类误差比二类误差更为严重,实际使用中更为关注一类误差
- 正确的判断为接受实际存在差异的情况,或者拒绝实际不存在差异的情况
- 实际使用中的一类误差描述为:错误地接受假设,即在实际不存在差异的条件下,错误地认为存在显著差异
- 实际使用中的 α 值,实际就是限制一类误差出现的概率上限,通常取值为0.05,0.01,0.001等,多用0.05
- 一类误差出现的实际概率为计算的p值,当<0.05 时,一类误差出现的概率小于0.05,也就可以说在统计意义上认为该分析可信。
/ | / | 判断 | 判断 |
---|---|---|---|
/ | / | 无差异 | 有差异 |
事实 | 无差异 | √ | type I 误差 |
事实 | 有差异 | type II 误差 | √ |