Type I error的产生原理和实用分析

Type I error产生的原理

理论部分

参考(Research Methods in Human-Computer Interaction)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结

一类误差产生于统计分析的概率特性,概率上任何事件都会存在误差,因此会有A与B在95%的概率置信水平上存在显著差异的说法,一类误差和二类误差描述的是这个结论出错的概率。

实用分析

实际的HCI假设检验过程:

  1. 假设存在显著差异
  2. 设计实验
  3. 采集结果
  4. 数据分析
  5. 得出结论

关键点:

  • 实际使用的假设其实是理论推导过程的H1假设,即假设存在差异,而非是没有差异.
  • 一类误差比二类误差更为严重,实际使用中更为关注一类误差
  • 正确的判断为接受实际存在差异的情况,或者拒绝实际不存在差异的情况
  • 实际使用中的一类误差描述为:错误地接受假设,即在实际不存在差异的条件下,错误地认为存在显著差异
  • 实际使用中的 α 值,实际就是限制一类误差出现的概率上限,通常取值为0.05,0.01,0.001等,多用0.05
  • 一类误差出现的实际概率为计算的p值,当<0.05 时,一类误差出现的概率小于0.05,也就可以说在统计意义上认为该分析可信。
//判断判断
//无差异有差异
事实无差异type I 误差
事实有差异type II 误差
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值