IJCNN(International Joint Conference on Neural Networks)成立于1990年,是IEEE计算智能协会(IEEE Computational Intelligence Society)主办的一项年度国际会议。它提供了一个交流讨论神经网络和相关领域最新研究的平台。会议每年在不同的国家和地区举办,吸引了全球范围内的学术界和工业界的研究人员、学者、工程师和学生参加。IJCNN是国际上顶尖的神经网络领域的会议之一,涵盖了神经网络、深度学习、机器学习、模式识别、智能系统等领域的各种研究主题,反映了神经网络的研究前沿,具有广泛的参考价值。
本文主要介绍实验室在交通流预测方面的最新研究成果《Spatial-Temporal Retentive Heterogeneous Graph Convolutional Network for Traffic Flow Prediction》,目前该论文已经被会议IJCNN 2024接收。交通流预测是智能交通系统中的研究热点,由于交通路网中复杂的时空依赖关系和特征不完整性,交通流预测一直是一项具有挑战性的任务。该论文设计了一个时空异质性图卷积网络,实验结果表明,该模型可以有效捕获复杂的时空特征,并可以同时捕获时空异质性,从而增强模型的多步预测能力。本文的作者为朱旺,审校为邱雪和黄星宇。如您需要本文的全文或希望与作者进行交流,您可以发送邮件到223330859@st.usst.edu.cn。
1. 背景与挑战
交通流预测是智能交通系统的重要组成部分,实时、准确的交通流预测可以帮助管理人员进行高效的车辆调度,辅助出行人员进行路线规划,从而有效缓解交通拥堵状况。交通流预测由于其动态的时间相关性和复杂的空间依赖性,一直是一项具有挑战性的任务。本文主要解决如下关键问题:
(1)多步预测的精度随着预测时间的增加而出现明显下降的局限性
当预测时间步长增加时,模型往往缺乏长时记忆能力。随着误差的积累,模型对时空相关性的学习效果随预测步长的增加而逐渐下降。本文设计了时空保留网络(STRetNet),通过多尺度保留机制同时实现低成本推理、高效的长序列建模和并行训练,有效捕获长期时空相关性。
(2)模型无法同步捕获时空异质性的局限性
在交通路网中,不同功能区域的交通模式往往不同,存在较强的时空异质性。大多数模型通过时空块分别捕获时间和空间的异质性,缺乏时空之间的关联。本文构建了一个异质性图卷积(HGCN)模块,可以同步捕获时空异质性。
(3)时空特征的表达不够全面的问题
交通流预测是典型的时空预测问题,进行预测时构建的邻接矩阵往往无法全面反映路网的空间特征。因此,本文在邻接矩阵的基础上,引入了一个同时包含时间和空间特征的局部时空图。除此之外,论文还设计了两个可学习掩码矩阵,自适应的调整节点间依赖权重。
2. 方法
图1 STRHGCN模型整体框架
论文提出的时空保留异质性图卷积网络(STRHGCN)的整体框架如图1所示,该模型主要由输入层、时空特征提取层和预测层组成。具体来说,在输入层中,通过交通路网探测器节点,构造原始邻接矩阵和局部时空图。然后通过可学习掩码矩阵来自适应调整矩阵各个节点的聚合权重,使聚合更加合理。时空特征提取层通过一个全连接层将输入交通流张量转换到高维空间,然后依次通过时空保留模块和时空异质性图卷积模块进行时空特征提取。其中,时空保留模块采用“三明治”块结构构建,即每个时空保留块依次由时间保留网络→空间保留网络→时间保留网络构成,这种结构更有利于捕获数据中隐藏的时空特征。通过堆叠多层时空保留块可以捕获更复杂的长期时空相关性。在时空异质性图卷积模块中,通过对构造的可学习局部时空图进行时空信息聚合来捕获时空异质性。通过部署多个时空异质性图卷积层来增加感受野,从而捕获长期时空异质性。最后在预测层,利用多个预测单元来实现多步预测。
3. 实验结果
论文在PeMS04和PeMS08数据集上与9种基线模型进行了对比实验。通过学习一小时的历史交通流量数据,实现对未来30 /45 /60分钟交通流量的多步预测。论文采用平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)作为评价指标对预测结果进行了全面比较,论文提出的STRHGCN模型在三个预测步长上都获得了最优性能。此外,论文还进行了消融实验,并对实验结果进行了可视化,从而验证各个模块的有效性。通过对可学习局部时空图进行可视化,结果表明本文设计的可学习局部时空图能够自适应地调整节点间的依赖权重,帮助模型更好的学习时空特征。
4. 结论
论文提出了一个用于交通流预测的时空异质性图卷积网络,有效地解决了多步预测精度下降、无法同步捕获时空异质性、特征表达不全面的问题。具体来说,论文设计了一个时空保留模块,通过多尺度保留机制对动态时间相关性和复杂空间依赖性进行建模,有效捕获长期时空特征,从而提高多步预测的精度。针对大多数模型无法同步捕获时空异质性的问题,论文设计了一个异质性图卷积模块,该模块通过对构造的局部时空图进行特征聚合,可以同步捕获时空异质性。为了解决特征表达不全面的问题,论文构建了邻接矩阵和局部时空图,并通过可学习掩码矩阵自适应调整聚合权重。论文在两个真实数据集上进行了对比实验和消融实验,结果表明本文提出的模型的预测性能获得了显著提升。