用于交通流量预测的时空注意图卷积网络

1aa978847a06cf8cb8dd74b663bd8356.png

文章信息

091e2f9c69eb18b03e0b46cb7a7e6456.png

《Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction》是2022年被IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTA TION SYSTEMS接受的一篇文章。

f1637844f194efc1847c7c29f053f620.png

摘要

937205fe30b2c895191f782ec303c17c.png

准确的短时交通流预测在提供近期路况信息方面起着重要的作用。有了这些信息,智能车辆可以规划和调整路线,以防止拥堵。因此,目前已经提出了许多短时交通流预测模型。然而,它们中的大多数集中于整个交通网络的预测,这可能导致几个问题:(1)整个交通网络可能具有大的规模和复杂的结构,为此模型训练可能是费时且低效的;(2)在中央云上处理大量训练数据会给服务器造成很大的计算压力,增加隐私泄露的风险。文章提出了一种基于边云模型的时空注意图卷积网络(STAGCN-EC首先将整个交通网络分成几个部分,以降低其规模和复杂性。然后,我们将网络的每个部分分配给某个路边单元(RSU)用于训练,因此不需要在中央服务器上处理所有数据。此外,利用时空注意和适合rsu等低计算能力设备的特征提取模块来捕捉时空相关性和预测交通流。最后,使用了加州第7区和第4区的两个高速公路数据集来验证我们的模型。通过实验,发现与五种基线方法相比,该模型在预测精度和效率上都有很好的表现。

052b968f121cf25608b4278a0d5a83a3.png

介绍

3fd89b9e40c95379ed4f68b7ec0e5eac.png

文章提出的策略的优点被总结为:(a)建模和训练比传统的深度学习模型更容易和更有效,因为每个计算任务更简单;(b)训练数据不再上传到中央服务器,而是在边缘云设备上处理。因此,减轻了服务器的压力,提高了数据安全性。文章提出一种基于边缘云模型的时空注意图卷积网络(STAGCN-EC)来实现边缘设备的交通流量预测。在这个模型中,首先将交通网络表示为一个无向图。然后,将图分成若干子图,并将每个子图的训练任务分别分配给某个RSU进行计算。最后,我们利用时空注意力和特征提取模块来学习子图的时空相关性,从而预测未来的交通流量。模型的框架如图1所示。

4a6b5e573008ff4ffb5e3c4f656d0fc9.png

贡献如下:

(1)提出了一个名为STAGCN-EC的交通流预测模型,将目标区域的整个交通网络划分为若干个子图。然后将子图的训练任务和数据分配给相应的rsu,而不是上传到中心云服务器,既减轻了中心服务器的压力,又提高了数据安全性。

(2)提出了一种新的计算网络节点重要性的NodeRank算法,可以保留重要节点,减少图划分过程中的信息损失。此外,我们利用一个高效的时空注意和特征提取模块,包括注意机制、图卷积网络(GCN)和门控递归单元(GRU),来学习时空相关性并准确快速地进行预测。

(3)在两个真实数据集PeMS07和PeMS04上评估了STAGCN-EC模型。实验表明,该模型在每一个数据集中都能准确有效地进行预测。

c9789e3ae228ac76ff3edb4f38db02a1.png

方法

5bf94ebe1b5fe5d6c1d96c6022d38a93.png

基础知识

到目前为止,许多传感器被安装在道路上,用来检测和记录时间序列的交通信息,如交通流量、速度、占用率等。同时,还可以测量传感器之间的连通性和距离等空间信息。当给定相应的时空信息数据时,本文模型能够准确有效地预测未来的交通流量。为了更好地解释这个过程,下面给出了三个定义。为了便于参考,表1列出了主要的符号。

77d8073a6f5d1fb264ca55506d97d51b.png

定义1:交通网络。我们将交通网络表示为一个无向图G = (V,E,A), V是一组节点,表示道路上的传感器。如果总共有N个节点,那么有|V| = N,V = {V1,V2,,VN}。e是边的集合,表示节点是否与其他节点链接。a∈rn×n是一个邻接矩阵,它是对称的并且只包含0和1,因此如果Aij= Aji= 1,则节点I和j是连通的。然后,定义了一个距离矩阵A’ ∈ RN×N来度量节点间的距离,其中当Aij= 1 时A’ ij = distanceij,d Aij= 0 时A’ ij= ∞。

定义2:子图。为了应用边云,将无向图G作为交通网络的表示,根据rsu的数量分成若干个子图。每个RSU负责某个区域,选择该区域内的节点构造一个子图。假设网络中有M个rsu,子图定义为SG = {SG1,SG2,,SGM}, SGi= {Vi1,Vi2,,Vini},i ∈ [1,M],ni是子图I中的节点数。

定义3:图形信号。为简洁起见,其余部分选择交通流数据来表示时间序列交通信息。我们使用Xj t = (Xt1,Xt2,,Xtnj)T∈Rnj来表示子图j的图信号,其中Xti表示节点i在时间t的业务流。

问题陈述:对于子图j,给定其在时间段T期间的图信号Xj T,在接下来的τ个时刻的交通流量的预测可以计算如下:

ac8027e02d8e9d1334c9077b24bb6439.png

其中fj(SGj;Xj)是从给定数据到拓扑结构SGj上的预测的映射。通过训练所提出的模型,可以学习每个子图的最佳映射f。

总述

在这一节中,简要总结了模型的结构。如图2所示,首先构建一个图来表示交通网络。其次,为了将计算任务分配给rsu,需要将图分成几个子图。然而,图分割的过程可能会导致信息丢失,因为图中的一些边被切断了。因此,提出了一种新的NodeRank模型来度量图中节点的重要性,并保留重要节点的边以减少信息损失,从而提高训练效果。在图划分之后,每个子图被分配给其对应的RSU。然后,对于每个子图,使用一个全连接层来重塑输入数据。将形状相同的数据输入到时空特征学习模型中,可以很好地捕捉交通数据的时空相关性,准确预测交通流量。最后,通过全连通层的再次整形,得到最终的预测结果。此外,利用相邻子图之间的相似性,引入迁移学习和预训练机制,缩短训练时间,提高预测精度。整个过程如算法1所示。

75d1eb1aa4bd8feb926d109ca80c15f6.png

b5db5e868c2fd06ad67f3490a6e42d0c.png

图形划分模块

如前所述,将整个图分成几个子图,并将它们分配给rsu。然而,在此过程中,许多链接到节点的边被断开,因此丢失了一些关于连通性的信息,这可能对训练和预测产生不良影响。因此,有必要减少这种信息损失。

就像其他复杂网络一样,节点重要性是交通网络中的一个关键因素,有助于交通规划、分析和安全。现在,如果已经测量了图中节点的节点重要性,可以选择更重要的节点作为中心节点,并用它们周围的节点构造子图。结果,包含更多信息的中心节点的边被保留。因此,减少了信息损失。这样,就需要一种有效的方法来度量节点的重要性。Liu等人[39]认为,有三个至关重要的度量标准来衡量交通网络中目标节点的节点重要性,它们是:(a)与目标节点连接的其他节点的数量;(b)连接到目标节点的边的权重;(c)与目标节点连接的其他节点的重要性。考虑到所有这些度量,提出了NodeRank来度量节点的重要性。特别地,结合了PageRank和介数中心性,并对它们进行了一些改进,以更好地适应交通网络。

1)介数中心性:介数中心性被定义为通过该节点的最短路径的总和,可以表示为:

c79fe533695b0588b74ccefa737f5077.png

其中σst(v)表示从s到t通过节点v的最短路径的数量;σst表示从s到t的最短路径之和;v表示图中的节点集。根据定义,可以发现具有高CB的节点很可能是交通枢纽,因为它是交通网络中许多路线的最短路径。

2)PageRank: PageRank,由Page等人提出,旨在一开始就计算网页的重要性。PageRank可以定义在任何有向图上,后来被应用于社会影响分析、文本摘要和许多其他问题。根据随机行走模型,如果节点I的度是k,则节点I行进到其他节点的概率可以表示如下:

6f9ab83032532dca85aac27b0dab163d.png

其中i,j = 1,2,,n,i≠ j;节点i和j之间的mij是转移概率,定义为转移矩阵。而且,转移矩阵具有如下性质:mij≥ 0, mij从i到n= 1。

现在转到PageRank的值,设R = PR(v1) PR(v2) PR(vn) T,w h e r e PR(vi)表示节点I的PageRank值。假设存在完全随机行走模型,并且其转移矩阵M中的所有元素都是1/n。那么PageRank的一般形式是转移矩阵M和M的线性组合:

4f5add7a81b0e9a55890c51b5bbb5e74.png

其中,α ∈ [0,1]是阻尼因子,表示一个节点到另一个节点的电阻。这个马尔可夫链已被证明具有平稳分布。然后,可以使用迭代算法或幂算法来求解平稳分布R,它包含所有节点的PR值。

3)NodeRank:根据PageRank算法,可以得到网络的节点重要度。然而,由于以下两个原因,这种方法可能不适合直接应用于交通网络。在定义转移矩阵时,它不考虑两个节点之间的距离。然而,在交通网络中,节点间的距离是不可忽略的,它会影响信息的传递和传播。另一方面,PageRank算法为所有节点分配相同的权重1,忽略了每个节点的不同节点重要性。因此,提出了一种新的NodeRank算法来适应交通网络的特点,更好地度量节点的重要性。对于连接到交通枢纽的节点(权重较大的节点)似乎更重要,首先使用介数中心性来计算节点的权重。重新定义mij:

539358311ad924cef2414d75a5029302.png

其中CB(j)是节点j的中间中心性;jCB是与j连接的节点的介数中心值的总和。

根据PageRank的原始定义,阻尼因子表示从一个节点到另一个节点的电阻,是一个固定值,通常等于0.85。但是在NodeRank中,利用距离信息来计算这个因子,因为距离是旅行的强大阻力。设α为对角矩阵α = diag(α1,,αn),αJ可表示为:

83c81b4bb8f1d3ed3d82062eac94df62.png

其中dij是节点i和j之间的距离;β是一个比例因子。那么马尔可夫链可以改写为:

2fd830d6f568bb93da17d34146dd4c7c.png

现在获得了NodeRank值向量R,也就是找到了交通网络中最重要的节点。然后可以用这些节点构造子图。

为了总结这一部分,提出了一种新的节点秩方法来度量交通网络的节点重要性,选择最重要节点的前M个(rsu的数量)作为中心节点来构建子图。这样就保留了重要节点的边,保存了更多的信息,有助于更准确的预测。

时空注意模块

注意机制首先由Bahdanau等人为机器翻译提出,现在它在神经网络中起着重要的作用。注意机制是一种通过改变输入数据的权重来关注更重要的数据的方法。在交通网络中,交通数据对空间和时间动态具有复杂的依赖性。不幸的是,由于硬件的限制,rsu和其他边缘云设备通常具有较差的计算性能,并且可能无法有效地提取特征。因此,我们使用时空注意机制来帮助提取时空特征。对于子图I, Xi T= (Xi t,Xi T+1,,Xit) ∈ Rn×T, T表示数据在时间维度上的长度,那么空间维度的注意力可以表示为:

4252680befae4ba3aefcf92925b61471.png

其中Us∈ Rn×n,Ws∈ RT×T,bs∈rn×n是可学习参数,σ是sigmoid激活函数。空间注意矩阵Si∈rn×n表示子图I中节点之间的相互关系,提取子图的空间依赖性。然后,使用softmax函数来确保节点的权重总和为1。

同样,可以将时间维度的注意定义为:

bd16a45e69a76a33f116bd43485622d7.png

其中Ue∈ RT×T,We∈ Rn×n,be∈ RT×T也是可学习参数,σ是sigmoid激活函数。时间注意矩阵Ei∈rT×T反映了历史时间数据中T个时刻之间的相关性,提取了子图I的时间特征。图3显示了时空注意过程。

7436fa0d50ba8cc0bb00505e177893ba.png

在本节中,考虑到边缘设备的有限性能,采用时空注意机制来关注重要数据并捕捉数据中的特征,从而允许小规模的神经网络更有效地学习。

时空特征学习模块

在注意机制之后,需要进一步提取时空相关性用于交通流预测。在空间维度,如第二节所述,GCN擅长于图形结构的特征提取。在时间维度上,递归神经网络(RNN)可能是一种捕捉相关性的常用方法。然而,传统的RNN经常遭受消失梯度和爆炸梯度,现在被其改进版本LSTM和门控递归单位网络(GRU)所取代。LSTM和GRU的基本原理大致相同,而GRU的训练时间和参数更短更少,这意味着GRU更适合边缘设备。因此,使用GCN和GRU来分别学习空间和时间依赖性。

1)图卷积网络:在谱图分析中,一个图由其对应的拉普拉斯矩阵表示,这可以帮助求解傅立叶基。Henaff等人将傅立叶域上的图形卷积表示为:

b5577621f6d8c8b73a8012afdb84eef5.png

然而,gγ()的精确解需要大量的计算能力和时间。因此Simonovsky等人提出了一种近似算法,采用切比雪夫多项式进行近似。然后,图形卷积定义如下:

726a36846c220412c8dbbaf3dae296ed.png

图卷积聚集了来自k个相邻节点的信息。如图4所示,图卷积能够聚合相邻节点的信息,然后捕捉节点的空间特征和相关性。

4ebc3a3a8ee1158fb7f24e3926e4a82c.png

2)门控循环单元:GRU有一个类似于传统RNN的投入产出结构。对于GRU单元,输入包括当前输入XT和前一时刻的隐藏状态ht-1;输出包括隐藏状态ht和输出yt。在GRU单元内部,有复位门r和更新门u:

958954b18a2efb7f3ea7c64b4fd7eec2.png

通过重置和更新先前时刻的隐藏状态,GRU可以聚集信息并捕捉时间维度上的相关性。图5显示了时间相关性提取的过程。

8779e5b2e1d361fc71bc6ccb5f1f337e.png

转移学习模块

由于相似的土地利用和道路的连续性,人们认为相邻的子图具有相似的交通流特征。例如,在中央商务区(CBD)的高峰时段,交通拥堵通常会影响整个CBD,甚至邻近地区。也就是说,由于交通状况的扩展,相邻区域可以共享相似的交通特征。因此,我们可以通过共享神经网络的参数来将迁移学习应用于相邻子图,以尽可能减少训练时间。如图6所示,用两个完全连接的层包围特征提取层,以使参数传递具有相同的维度。然而,相邻的子图可能具有完全不同的特征。例如(见图7(a)),有两个相邻的子图A和B,其中A由一条主干路和它的一些旁路组成,B仅由一些旁路组成。然后我们就可以知道子图A和B有不同的特征。因此,我们引入了一种预训练机制,用共享参数和随机初始化的参数来训练模型,允许模型估计共享参数是否适合子图。图7(b)显示了预培训机制的内部结构。

a192f858fc8312f2c2c3ca891cc9df5b.png

608d8c6e6d3de406a2c888d2665b41bb.png

5c5de4d87c8e60c6a45bbc95f20b8449.png

实验

f79c6c20fc005e1caae8ca4ba2602227.png

在加利福尼亚州的两个高速公路交通数据集上评估了该模型,即PeMS07和PeMS04。这些数据是由加州运输局绩效评估系统(PeMS)实时收集的。经过预处理后,提供每五分钟的交通数据。在实验中,使用过去一个小时的交通流量数据来预测下一个小时的流量。此外,这两个数据集包含相邻传感器的距离信息,因此可以从相邻和距离信息中提取空间特征。

6d37b532804f948d7deba6cb424de922.png

Attention

e857cbbec26d11d034886946b97a1c2e.png

如果你和我一样是轨道交通、道路交通、城市规划相关领域的,可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值