基于uwb和IMU融合的三维空间定位算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

..........................................................................


kkk = 0;
for EbN0 = EbN0_sub
    kkk
    kkk = kkk + 1;
    
    for jj1 = 1:Tag_Num
        jj1
        rng(jj1);
        for jj = 1:num_bits
            
            %TAG to BS1
            delay_1         = round(time_bs_tag(1,jj1)/ts);
            xx1             = zeros(1,delay_1);
            %传播时延
            delay_1_1(jj,:) = [xx1 sig(1:end-length(xx1))];
            %UWB
            h_4             = uwb_channel(dist_bs_tag(1,jj1)); 
            %信号经过信道
            conv_data1      = conv(delay_1_1(jj,:),h_4); 
            UWB_chan1(jj,:) = conv_data1(1:length(sig));
            
            
            
            %TAG to BS2
            delay_2         = round(time_bs_tag(2,jj1)/ts);
            xx2             = zeros(1,delay_2);
            %传播时延
            delay_2_1(jj,:) = [xx2 sig(1:end-length(xx2))];
            h_2             = uwb_channel(dist_bs_tag(2,jj1));
            conv_data2      = conv(delay_2_1(jj,:),h_2);
            UWB_chan2(jj,:) = conv_data2(1:length(sig));

            %TAG to BS3
            delay_3         = round(time_bs_tag(3,jj1)/ts);
            xx3             = zeros(1,delay_3);
            %传播时延
            delay_3_1(jj,:) = [xx3 sig(1:end-length(xx3))];
            h_3             = uwb_channel(dist_bs_tag(3,jj1));
            conv_data3      = conv(delay_3_1(jj,:),h_3);
            UWB_chan3(jj,:) = conv_data3(1:length(sig));

            %TAG to BS4
            delay_4         = round(time_bs_tag(4,jj1)/ts);
            xx4             = zeros(1,delay_4);
            %传播时延
            delay_4_1(jj,:) = [xx4 sig(1:end-length(xx4))];
            h_4             = uwb_channel(dist_bs_tag(4,jj1));
            conv_data4      = conv(delay_4_1(jj,:), h_4);
            UWB_chan4(jj,:) = conv_data4(1:length(sig));   
        end

        for jj = 1:num_bits
            UWB_chan1n(jj,:) = awgn(UWB_chan1(jj,:)/max(UWB_chan1(jj,:)),EbN0,'measured');
            UWB_chan2n(jj,:) = awgn(UWB_chan2(jj,:)/max(UWB_chan2(jj,:)),EbN0,'measured');
            UWB_chan3n(jj,:) = awgn(UWB_chan3(jj,:)/max(UWB_chan3(jj,:)),EbN0,'measured');
            UWB_chan4n(jj,:) = awgn(UWB_chan4(jj,:)/max(UWB_chan4(jj,:)),EbN0,'measured');
        end

        
        %自适应前沿检测
        %自适应前沿检测

..........................................................
        
    end
end


P_est0 = [x_est0',y_est0',z_est0'];
P_est1 = [x_est1',y_est1',z_est1'];

figure;
plot(toa_error0,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
 
hold on
title('估计误差')
 
axis([0,Tag_Num,0,2]);
ylabel('cm');


figure
axis([0 10 0 10 0 10]);  
for i=1:BS_Num      
    plot3(BS_pos(i,1),BS_pos(i,2),BS_pos(i,3),'ko','MarkerFace','y','MarkerSize',8);
    hold on
end
hold on
for i=1:Tag_Num
plot3(Tag(i,1),Tag(i,2),Tag(i,3),'k^','MarkerFace','b','MarkerSize',6);
hold on
plot3(x_est1(i),y_est1(i),z_est1(i),'ks','MarkerFace','r','MarkerSize',6);
hold on
end

grid on
xlabel('cm');
ylabel('cm');
zlabel('cm');


save R.mat toa_error1
36_003m

4.算法理论概述

         基于UWB和IMU融合的三维空间定位算法是一个结合了无线脉冲波(UWB)和惯性测量单元(IMU)各自优势的定位方法。UWB通过测量信号的传输时间来计算距离,具有精度高、抗干扰能力强等优点,但易受多径效应和环境噪声的影响。IMU则通过测量加速度和角速度来计算姿态和位置信息,具有实时性和动态性强的特点,但受限于加速度的测量误差和漂移。

        通过将这两种技术进行融合,可以充分利用它们的优点来提高定位精度和稳定性。具体来说,UWB可以提供高精度的距离信息,用于计算目标的位置和姿态,而IMU可以提供实时的加速度和角速度信息,用于修正UWB的测量误差和漂移,同时提高系统的响应速度和鲁棒性。

       下面介绍一种基于UWB和IMU融合的三维空间定位算法,其原理和数学公式如下:

  1. UWB定位

         UWB采用双基站的定位方式,假设已知两个基站的位置坐标为(x1, y1, z1)和(x2, y2, z2),目标的位置坐标为(x, y, z),则可以通过以下公式计算目标到两个基站的距离差:

Δd = (x2-x1)² + (y2-y1)² + (z2-z1)² - (x-x1)² - (y-y1)² - (z-z1)²

        其中,(x, y, z)为目标的位置坐标,(x1, y1, z1)和(x2, y2, z2)分别为两个基站的位置坐标。根据距离差和两个基站的坐标,可以列出两个方程,求解得到目标的位置坐标(x, y, z)。

IMU辅助

       IMU可以提供实时的加速度和角速度信息,用于修正UWB的测量误差和漂移。具体来说,IMU可以提供一个加速度传感器和一个陀螺仪,分别测量加速度和角速度信息。通过对这些信息进行积分和平滑处理,可以得到目标的姿态和位置信息。

       在融合过程中,可以将IMU的加速度和角速度信息作为UWB的辅助数据,对UWB的测量结果进行修正。具体来说,可以将IMU的加速度信息用于计算目标的速度和加速度,对UWB的距离测量结果进行修正,同时利用IMU的角速度信息对UWB的角度测量结果进行修正。这样可以使系统具有更高的精度和鲁棒性。

融合算法

      基于UWB和IMU融合的三维空间定位算法主要包括两个阶段:数据采集阶段和数据融合阶段。在数据采集阶段,通过UWB和IMU采集目标的位置、速度、加速度、角速度等信息;在数据融合阶段,将采集到的数据进行融合处理,得到目标的最终位置、速度、加速度、角速度等信息。
解算过程可以根据需要采用最小二乘法、卡尔曼滤波等方法进行优化求解。例如,采用卡尔曼滤波算法可以将UWB和IMU的数据进行融合处理,得到更为精确的目标位置、速度、加速度、角速度等信息。具体实现过程如下:

(1)初始化状态矩阵和控制矩阵;
(2)通过UWB和IMU采集数据;
(3)利用采集到的数据计算状态矩阵和控制矩阵;
(4)根据卡尔曼滤波公式对状态矩阵和控制矩阵进行迭代计算;
(5)根据迭代结果计算目标的最终位置、速度、加速度、角速度等信息。

算法优点


基于UWB和IMU融合的三维空间定位算法具有以下优点:
(1)精度高:通过UWB和IMU的融合,可以减小环境噪声对定位精度的影响,提高算法的鲁棒性;
(2)实时性强:IMU的加速度和角速度信息可以提供实时的姿态和位置信息,对UWB的距离测量结果进行修正,缩短了系统的响应时间;
(3)可靠性高:通过数据融合技术处理多传感器数据,可以减小单一传感器的故障对系统性能的影响;
(4)扩展性强:该算法可以适用于多种场景,例如机器人定位、无人驾驶等。

5.算法完整程序工程

OOOOO

OOO

O

### 关于UWB定位算法MATLAB仿真代码 #### UWB定位原理简介 UWB(Ultra-Wideband)是一种无线通信技术,能够在短距离内实现高精度的位置测定。其工作原理依赖于发送纳秒级甚至皮秒级宽度的窄脉冲来传输数据,通过测量飞行时间(Time of Flight, TOF),进而计算目标物体的距离。 #### MATLAB中的UWB信号生成 为了更好地理解UWB定位过程,可以从生成UWB脉冲信号入手。下面是一段用于创建理想化的单周期Gaussian monocycle波形作为UWB脉冲的例子[^3]: ```matlab % 参数设定 fs = 10e9; % 设置采样率为10GHz f_center = 4e9; % 中心频率设为4GHz duration = 10e-9; % 定义持续时间为10ns的时间窗口 time_vector = linspace(0,duration,numel(linspace(-5*std_dev,5*std_dev,floor(duration*fs)))); std_dev = 1e-9; % 构建并绘制UWB脉冲 uwb_signal = cos(2*pi*f_center*time_vector).*exp(-(time_vector.^2)/(2*(std_dev^2))); figure; plot(time_vector,uwb_signal); title('Idealized Gaussian Monocycle Pulse'); xlabel('Time (seconds)'); ylabel('Amplitude'); grid on; ``` #### 实现EKF/UWK/Taylor Series Position Estimation等典型定位算法 针对不同场景下的需求差异,可以选择多种定位算法之一来进行位置估算。以下是采用扩展卡尔曼滤波器(Extended Kalman Filter,EKF)的一个简化版本示例程序片段[^2]: ```matlab function [estimated_position,P]=ekf_uwb(anchor_positions,measurements,Q,R,x_init,P_init) n_anchors=length(anchor_positions(:,1)); H=zeros(n_anchors,2); for k=1:length(measurements) z_k=measurements(k,:); % 当前时刻观测值 % 预测阶段 F=eye(size(x_init)); x_pred=F*x_init(:)'; P_pred=F*P_init*F'+Q; % 更新阶段 r=sqrt(sum((anchor_positions-repmat(x_pred',n_anchors,1)).^2,2)); H=-diag(r)\repmat([1,-1],n_anchors,1)./(r+r>eps); K=P_pred*H'/(H*P_pred*H'+R); estimated_position=x_pred+K*(z_k-r'); P=(eye(length(K))-K*H)*P_pred; x_init=estimated_position'; P_init=P; end end ``` 此函数接收锚节点坐标`anchor_positions`, 测量得到的距离差分`measurements`以及其他必要的协方差矩阵参数,并返回最终估计出来的二维平面内的位置向量`estimated_position`及其对应的误差协方差矩阵`P`. 上述例子仅展示了一种可能的方法;实际上还有许多其他类型的定位算法可供选择,比如无迹卡尔曼滤波(Unscented Kalman Filter, UKF), 泰勒级数展开(Taylor series expansion)等等。每一种都有各自的特点适用范围,在具体实施时应考虑实际情况做出合理的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单做算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值