[阅读体会] 学习OpenCV 3 (Learning OpenCV 3)

在这里插入图片描述

书中实用的资料站点

示例代码:https://github.com/oreillymedia/Learning-OpenCV-3_examples

书籍官网:http://shop.oreilly.com/product/0636920044765.do

OpenCV源码:https://github.com/opencv/opencv

OpenCV wiki:https://github.com/opencv/opencv/wiki

OpenCV Meeting notes:https://github.com/opencv/opencv/wiki/Meeting_notes

OpenCV 速查表:https://docs.opencv.org/3.0-last-rst/opencv_cheatsheet.pdf

OpenCV 问答社区:https://answers.opencv.org/questions/

趁现在OpenCV3还是主流,抓紧时间学习!Go Go Go!!!

第一章

1、[OpenCV] 对using namespace cv;的理解

2、编程中通过只使用必须的头文件来节约编译时间。

3、好的程序会检查argv[1]是否存在并且给用户反馈一个错误信息。

4、[opencv] 对C++版中 Mat结构的理解

5、在更长、更复杂的代码中,程序员应该在窗口的生命周期自然结束之前自主销毁窗口以防止内存泄漏。

6、设置为33ms的目的是让视频以30FPS的速率播放,并且允许用户在播放的时候打断。

<think>嗯,用户想知道如何在YOLOv5中仅训练三个类别的模型。首先,我需要回忆YOLOv5的配置步骤。YOLOv5通常需要数据集和配置文件,比如dataset.yaml和模型结构文件。 根据引用[1],用户需要设置dataset.yaml文件,里面包含类名和路径。所以,用户应该修改这个文件中的类别数,把原来的类别换成自己的三个类别。比如,把names下的类别改为三个。同,确保训练、验证和测试的图片路径正确。 然后,模型结构配置,比如yolov5s.yaml,里面的nc参数代表类别数,需要从原来的80改为3。这样模型输层才能对应三个类别。引用[1]提到了使用--cfg指定模型配置,所以用户应该在训练命令里指定修改后的yolov5l.yaml或者其他版本,同nc设为3。 接下来,检查数据集是否正确标注。YOLOv5使用txt格式的标注,每行是class_id和归一化后的坐标。用户需要确认所有标注文件中的class_id都是0到2,对应三个类别。如果有其他class_id,训练错。 训练命令方面,引用[1]中的例子用了--img 640,--batch 16,--epochs 300等参数。用户需要调整这些参数,特别是--data指向新的dataset.yaml,--cfg指向修改后的模型配置。如果预训练权重不适用,可能需要用--weights ''从头开始训练,或者用预训练的但修改输层。 可能遇到的问题包括类别数不匹配导致加载权重失败,这候可能需要调整权重文件的输层。或者数据集路径错误,需要检查路径是否正确。 用户可能还想知道如何验证是否只训练了三个类别,可以查看训练日志中的类别名称,或者在验证检查输是否正确。另外,训练后的模型在推理应该只识别这三个类别。 总结步骤:修改dataset.yaml的类别,调整模型的nc参数,检查标注文件,运行训练命令。确保所有配置正确,避免常见错误。</think>在YOLOv5中仅训练三个类别的模型,需按照以下步骤进行配置: ### 一、数据集准备 1. 标注文件格式需符合YOLOv5要求,每个对象标注为`class_id x_center y_center width_height`的归一化坐标 2. 确保数据集中仅包含目标三个类别的标签,class_id必须为0、1、2(对应三个类别) ### 二、配置文件修改 1. **dataset.yaml**配置示例: ```yaml path: ../datasets/custom train: images/train val: images/val test: images/test names: 0: class1 1: class2 2: class3 # 仅保留三个类别名称[^1] ``` 2. **模型配置文件**修改(如yolov5s.yaml): ```yaml # Parameters nc: 3 # 修改为3个类别 depth_multiple: 0.33 width_multiple: 0.50 ``` ### 三、训练命令 ```bash python train.py --img 640 --batch 16 --epochs 100 \ --data ./data/custom_dataset.yaml \ --cfg ./models/yolov5s_custom.yaml \ --weights yolov5s.pt # 建议使用预训练权重 ``` ### 四、验证关键点 1. 检查`names`字段顺序与标注文件class_id对应关系 2. 确认训练中显示的类别数: ``` Class Images Instances: all 3 3 3 ``` ### 五、常见问题处理 1. **类别不匹配错误**:检查模型配置文件`nc`值是否与dataset.yaml的类别数一致 2. **权重加载失败**:当使用预训练权重,若原模型类别数不同,需添加`--pretrained`参数
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值