在python机器学习过程中常用的文档连接整理

  1. Python3标准库文档
    https://docs.python.org/zh-cn/3/index.html

  2. numpy说明文档
    https://docs.scipy.org/doc/numpy/genindex.html

  3. pandas说明文档
    http://pandas.pydata.org/pandas-docs/stable/genindex.html#

  4. matplotlib说明文档
    https://matplotlib.org/genindex.html

  5. scikit-learn说明文档
    https://scikit-learn.org/dev/modules/classes.html#module-sklearn.naive_bayes

  6. xgbooks说明文档
    https://xgboost.readthedocs.io/en/latest/parameter.html

  7. TensorFlow说明文档
    https://www.tensorflow.org/
    TensorFlow模型动物园
    https://github.com/tensorflow/models

  8. Pytorch说明文档
    英文:https://pytorch.org/docs/stable/index.html
    中文:https://pytorch-cn.readthedocs.io/zh/latest/

  9. OpenCV说明文档
    1、官网链接: https://opencv.org/
    2、OpenCV-Python 教程: https://docs.opencv.org/master/d6/d00/tutorial_py_root.html

  10. 神经网络(深度学习)库
    Keras、lasagna、tensor-flow。
    lasagna是基于theano库构建的,而Keras既可以用tensor-flow也可以用theano。

  11. Tkinter说明文档
    这个比较好
    http://effbot.org/tkinterbook/tkinter-hello-tkinter.htm
    这个不太好
    https://docs.python.org/zh-cn/3/library/tkinter.html#how-to-use-this-section

数据可视化

  1. pyecharts说明文档
    https://pyecharts.org/#/zh-cn/
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径。 随着统计学的发展,统计学习在机器学习占据了重要地位,支持向量机(SVM)、决策树和随机森林等算法的提出和发展,使得机器学习能够更好地处理分类、回归和聚类等任务。进入21世纪,深度学习成为机器学习领域的重要突破,采用多层神经网络模型,通过大量数据和强大的计算能力来训练模型,在计算机视觉、自然语言处理和语音识别等领域取得了显著的成果。 机器学习算法在各个领域都有广泛的应用,包括医疗保健、金融、零售和电子商务、智能交通、生产制造等。例如,在医疗领域,机器学习技术可以帮助医生识别医疗影像,辅助诊断疾病,预测病情发展趋势,并为患者提供个性化的治疗方案。在金融领域,机器学习模型可以分析金融数据,识别潜在风险,预测股票市场的走势等。 未来,随着传感器技术和计算能力的提升,机器学习将在自动驾驶、智能家居等领域发挥更大的作用。同时,随着物联网技术的普及,机器学习将助力智能家居设备实现更加智能化和个性化的功能。在工业制造领域,机器学习也将实现广泛应用,如智能制造、工艺优化和质量控制等。 总之,机器学习是一门具有广阔应用前景和深远影响的学科,它将持续推动人工智能技术的发展,为人类社会的进步做出重要贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值