环境感知与规划专题(六)——模型预测控制(MPC)在运动规划中的应用(二)

本文介绍了模型预测控制(MPC)在多旋翼飞行器运动规划中的应用,详细推导了采用线性MPC的运动规划方案,包括系统模型的离散化、预测模型参数的计算、二次规划问题的求解以及硬约束与软约束的处理。此外,还阐述了运动规划后的控制算法框架,并讨论了MPC在手动操作和航点飞行模式下的应用。
摘要由CSDN通过智能技术生成

前言

 上一篇中简述了模型预测控制在多旋翼飞行器运动规划中的应用。

 本篇将针对采用线性MPC的多旋翼飞行器的运动规划方案进行详细推导。

系统模型的离散化

 对于多旋翼飞行器这类三阶积分器模型,我们可以很容易得到其连续时间系统模型:

p ˙ = v v ˙ = a a ˙ = j \dot p=v\\[2ex] \dot v=a\\[2ex] \dot a=j\\[2ex] p˙=vv˙=aa˙=j
 对其离散化,可得离散时间系统模型:
p i + 1 = p i + v i d t + 1 2 a i d t 2 + 1 6 j i d t 3 v i + 1 = v i + a i d t + 1 2 j i d t 2 a i + 1 = a i + j i d t i = [ 0 , 1 , 2... , K ] p_{i+1}=p_{i}+v_{i}dt+\frac{1}{2}a_{i}dt^{2}+\frac{1}{6}j_{i}dt^{3}\\[2ex] v_{i+1}=v_{i}+a_{i}dt+\frac{1}{2}j_{i}dt^{2}\\[2ex] a_{i+1}=a_{i}+j_{i}dt\\[2ex] i=[0,1,2...,K] pi+1=pi+vidt+21aidt2+61jidt3vi+1=vi+aidt+21jidt2ai+1=ai+jidti=[0,1,2...,K]
 在得到离散时间系统模型之后,我们将其进行参数化,得到预测模型:

P = T p J + B p V = T v J + B v A = T a J + B a P = [ p 1 , p 2 , . . . , p K ] T V = [ v 1 , v 2 , . . . , v K ] T A = [ a 1 a 2 , . . . , a K ] T J = [ j 1 , j 2 , . . . , j K ]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值