文档解析:有没有什么工具可以识别柱状图、折线图里的数据?

识别柱状图、折线图中的数据是数据分析和图表解析中的一个重要任务。以下是几种常见的方法,从手动到自动化,适用于不同的场景和需求:

01 手动识别

如果图表较为简单,可以通过手动测量和估算来获取数据。

02 使用图表解析工具

一些专业的图表解析工具可以自动提取图表中的数据,这些工具通常基于图像识别和机器学习技术。

03 使用编程方法

如果需要批量处理图表数据,可以使用编程语言(如Python)结合图像处理库(如OpenCV)和机器学习库(如TensorFlow或PyTorch)来实现自动化提取。

04 使用深度学习方法

对于更复杂的图表(如带有噪声或不规则形状的图表),可以使用深度学习模型来提取数据。

在众多工具和方法中,要想高效地识别柱状图、折线图中的数据,推荐使用TextIn文档解析工具,能够使图表中的数据识别更加事半功倍。

TextIn文档解析上线新功能——图表解析,目前已启动内测。图表解析功能可以智能解析图表属性Chart,并以Excel格式精准输出,帮助大模型深度理解图表的结构、趋势和数据逻辑,让数据分析更高效。

当前功能已支持饼图、折线图、柱状图、雷达图、散点图等多种图表类型。

从金融研报、市场分析材料到学术论文,柱状图、折线图、散点图等图表经常被运用于记录和直观表现数据。但是,当我们试图逆向拆解PDF或JPG、PNG格式的图表,将其重新转化为Excel等可编辑数据形式,就会遇到难点。

以金融行业为例,机构常需解析上市公司的年报、各类研报中的数据,其中包括大量图表数据。这些文件以PDF和图片格式为主体,也不乏批量处理更困难的加密PDF。相比纯文本,表格、图表中包含了更多重要数据,如何准确地提取这些数据对进一步的研究分析工作至关重要。

医学、工程等领域也经常会遇到类似的问题。现今的许多研究都奠基于上世纪50-80年代,在电子化时代之前,这些历史论文常存在数据缺失,关键图表仅存低清扫描件的问题。传统方法需要实验室研究生手动记录或用尺子测量图表像素,且无法保证精准度。

图表解析要解决的,正是这些难题。

目前,能将非矢量格式的图表解析为结构化数据的工具较为少见,且具有相当大的局限性。WebPlotDigitizerTesseract OCR等工具能辅助图表识别工作,但大多需要手动操作,精度有限;调用Python库则要求使用者有一定的编程能力。而且,这些方法都只能完成比较基本的图表识别,无法支持例如堆叠柱状图这样的复杂图表。

如果要在本地部署ChartOCR等深度学习模型,一方面,用户必须具备工程能力,另一方面,还需要拥有充分的计算资源,对非专业用户或少量解析需求而言成本过高。

为方便用户随时使用图表解析能力,TextIn文档解析上架新功能,通过线上参数配置即可调用,完成全文解析,无需对样本进行预先分割或其他预处理。让我们来看几个例子。

图1

图2

对于有数值标注的图表,TextIn文档解析可以直接输出准确表格,将其转化为结构化数据,方便后续的数据入库、分析或输入大模型进行处理。

图3

图4

对于没有明确数值的复杂图表,TextIn接口也会通过精确测量给出预估数值,在仅有扫描件、图片文件的情况下,帮助挖掘更多有效数据信息,完成分析及预测工作。

近期,大模型出色的性能和推理能力引起了广泛关注,大量企业或调用API,或在本地部署模型,运用大模型提升业务与办公效率。在上文我们提到的场景中,精准解析+强大推理,能实现更优秀的AI应用。

以图2中的图表为例。图表展示了全球工业机器人销售额,我们向大模型上传文件,并提出问题。下方图5为直接上传PDF的回答,图6为上传TextIn解析后的Markdown文件获得的答复。

图5

图6

可以看到,未经过解析的柱状图对大模型的理解造成了干扰,经过图表转化后,模型给出了准确、优质的答案。

大模型的迅速迭代发展正在改变传统的行业模式,文档解析等大模型加速器与之相辅相成,创造了更多应用可能性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值