小目大飞守角

 

1、「围棋常形」小目大飞守角后的常见定型,围棋处处皆战场

「围棋常形」小目大飞守角后的常见定型,围棋处处皆战场_哔哩哔哩_bilibili

2、【小目守角攻防】大飞角|碰|第一课:内扳

【小目守角攻防】大飞角|碰|第一课:内扳_哔哩哔哩_bilibili

3、【小目守角攻防】大飞角|碰|第二课:外扳及其他下法

【小目守角攻防】大飞角|碰|第二课:外扳及其他下法_哔哩哔哩_bilibili 

4、【职业棋手季力立讲围棋AI定式】小目 大飞守角

【职业棋手季力立讲围棋AI定式】小目 大飞守角_桌游棋牌热门视频 

5、AI布局简析-小目大飞守角、靠的变化(1)

AI布局简析-小目大飞守角、靠的变化(1)_哔哩哔哩_bilibili

6、AI布局简析-小目大飞守角、靠的变化(2)

AI布局简析-小目大飞守角、靠的变化(2)_哔哩哔哩_bilibili 

 7、AI布局简析-大飞守角、靠的变化(完结篇) 

AI布局简析-大飞守角、靠的变化(完结篇)_哔哩哔哩_bilibili

 

### YOLOv11在小目标检测中的改进与应用 YOLO系列作为实时目标检测的经典算法,在速度和准确性之间实现了良好的平衡。然而,对于小目标检测这一特定领域,传统的YOLO版本可能存在一定的局限性[^1]。为了提升YOLOv11在小目标检测上的表现,研究人员引入了一些针对性的技术改进。 #### 数据增强技术的应用 一种常见的改进方向是通过数据增强来提高模型对小目标的敏感度。具体而言,可以采用多种光度学失真(photometric distortions)和几何学失真(geometric distortions),例如调整图像的亮度、对比度、色调以及饱和度等属性,从而模拟不同的光照条件和视变化[^3]。此外,还可以通过对原始图像进行随机缩放、裁剪、翻转或旋转操作,进一步扩训练集的多样性,使模型能够更好地泛化到实际场景中小目标的情况。 #### 特征金字塔网络(FPN)结构融合 除了依赖于基础的数据增强手段外,特征金字塔网络(Feature Pyramid Network, FPN)[^2]也被广泛应用于解决小目标检测难题。FPN的核心思想是从多个尺度提取特征图,并将其自顶向下逐层融合,这样不仅可以充分利用高层语义信息,还能保留低层更精细的空间细节。这种多级特征融合机制显著增强了模型捕捉小尺寸物体的能力。 #### Reparameterization量化处理注意事项 值得注意的是,在基于重参数化的探测器实现量化过程中也需要特别小心对待[^4]。这一步骤对于保持最终部署阶段的小型设备上推理效率至关重要,同时也影响着整体性能指标的表现水平。 ```python import torch.nn as nn class FeaturePyramidNetwork(nn.Module): def __init__(self, in_channels_list, out_channel): super().__init__() self.inner_blocks = [] self.layer_blocks = [] for idx, in_channels in enumerate(in_channels_list, 1): inner_block_module = nn.Conv2d(in_channels, out_channel, kernel_size=1) layer_block_module = nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1) setattr(self, f'fpn_inner{idx}', inner_block_module) setattr(self, f'fpn_layer{idx}', layer_block_module) self.inner_blocks.append(inner_block_module) self.layer_blocks.append(layer_block_module) def forward(self, x): last_inner = getattr(self, 'fpn_inner{}'.format(len(x)))(x[-1]) results = [getattr(self, 'fpn_layer{}'.format(len(x)))(last_inner)] for feature, inner_block, layer_block in zip( reversed(x[:-1]), reversed(self.inner_blocks[:-1]), reversed(self.layer_blocks[:-1])): inner_top_down = nn.functional.interpolate(last_inner, scale_factor=2, mode="nearest") inner_lateral = inner_block(feature) last_inner = inner_lateral + inner_top_down results.insert(0, layer_block(last_inner)) return tuple(results) ``` 上述代码片段展示了一个简单的特征金字塔网络模块构建实例,该模块有助于改善YOLO架构下的小目标检测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值