我们如何在本地部署运行私有的开源大型语言模型(LLMs)呢?本文将向您梳理七种实用的方法及如何选择。
-
Hugging Face的Transformers
这是一个强大的Python库,专为简化本地运行LLM而设计。其优势在于自动模型下载、提供丰富的代码片段,以及非常适合实验和学习。然而,它要求用户对机器学习和自然语言处理有深入了解,同时还需要编码和配置技能。
-
Llama.cpp
基于C++的推理引擎,专为Apple Silicon打造,能够运行Meta的Llama2模型。它在GPU和CPU上的推理性能均得到优化。Llama.cpp的优点在于其高性能,支持在适度的硬件上运行大型模型(如Llama 7B),并提供绑定,允许您使用其他语言构建AI应用程序。其缺点是模型支持有限,且需要构建工具。
-
Llamafile
由Mozilla开发的C++工具,基于llama.cpp库,为开发人员提供了创建、加载和运行LLM模型所需的各种功能。它简化了与LLM的交互,使开发人员能够轻松实现各种复杂的应用场景。Llamafile的优点在于其速度与Llama.cpp相当,并且可以构建一个嵌入模型的单个可执行文件。然而,由于项目仍处于早期阶段,不是所有模型都受支持,只限于Llama.cpp支持的模型。
-
Ollama
作为Llama.cpp和Llamafile的用户友好替代品,Ollama提供了一个可执行文件,可在您的机器上安装一个服务。安装完成后,只需简单地在终端中运行即可。其优点在于易于安装和使用,支持llama和vicuña模型,并且运行速度极快。然而,Ollama的模型库有限,需要用户自己管理模型。
-
vLLM
这是一个高吞吐量、内存高效的大型语言模型(LLMs)推理和服务引擎。它的目标是为所有人提供简便、快捷、经济的LLM服务。vLLM的优点包括高效的服务吞吐量、支持多种模型以及内存高效。然而,为了确保其性能,用户需要确保设备具备GPU、CUDA或RoCm。
-
TGI(Text Generation Inference)
由HuggingFace推出的大模型推理部署框架,支持主流大模型和量化方案。TGI结合Rust和Python,旨在实现服务效率和业务灵活性的平衡。它具备许多特性,如简单的启动LLM、快速响应和高效的推理等。通过TGI,用户可以轻松地在本地部署和运行大型语言模型,满足各种业务需求。经过优化处理的TGI和Transformer推理代码在性能上存在差异,这些差异体现在多个层面:
-
并行计算能力:TGI与Transformer均支持并行计算,但TGI更进一步,通过Rust与Python的联合运用,实现了服务效率与业务灵活性的完美平衡。这使得TGI在处理大型语言模型时,能够更高效地运用计算资源,显著提升推理效率。
-
创新优化策略:TGI采纳了一系列先进的优化技术,如Flash Attention、Paged Attention等,这些技术极大地提升了推理的效率和性能。而传统的Transformer模型可能未能融入这些创新优化。
-
模型部署支持:TGI支持GPTQ模型服务的部署,使我们能在单卡上运行启用continuous batching功能的更大规模模型。传统的Transformer模型则可能缺乏此类支持。
尽管TGI在某些方面优于传统Transformer推理,但并不意味着应完全放弃Transformer推理。在特定场景下,如任务或数据与TGI优化策略不符,使用传统Transformer推理可能更合适。当前测试表明,TGI的推理速度暂时逊于vLLM。TGI推理支持以容器化方式运行,为用户提供了更为灵活和高效的部署选项。
7.DeepSpeed
微软精心打造的开源深度学习优化库,以系统优化和压缩为核心,深度优化硬件设备、操作系统和框架等多个层面,更利用模型和数据压缩技术,极大提升了大规模模型的推理和训练效率。DeepSpeed-Inference,作为DeepSpeed在推理领域的扩展,特别针对大语言模型设计。它巧妙运用模型并行、张量并行和流水线并行等技术,显著提升了推理性能并降低了延迟。
总结
选择部署框架的关键在于任务需求。只有根据实际需求来确定合适的框架,才能确保项目的顺利推进和成功实现。因此,在选择部署框架时,我们应该深入了解框架的特性、优缺点以及适用场景,综合考虑项目规模、技术栈、资源等因素,从而选择最适合的框架来支撑项目的实施。这样不仅可以提高开发效率,还能降低项目风险,确保项目的顺利推进和最终成功。
-
追求高性能推理?DeepSpeed是您的理想之选。其独特的ZeRO(零冗余优化器)、3D并行(数据并行、模型并行和流水线并行的完美融合)以及1比特Adam等技术,都极大提高了大模型训练和推理的效率。
-
期望一个易于使用的工具?ollama可能更适合您。简洁的命令行界面,让模型运行变得轻松自如。
-
需要创建嵌入模型的单个可执行文件?Llamafile将是您的得力助手。其便携性和单文件可执行的特点,让人赞不绝口。
-
在多种硬件环境下实现高效推理?TGI将是不二之选。其模型并行、张量并行和流水线并行等优化技术,确保了大模型推理的高效运行。
-
面对复杂的自然语言处理任务,如机器翻译、文本生成等?基于Transformer的模型将为您助力。其强大的表示能力,轻松捕捉文本中的长距离依赖关系。
-
处理大规模的自然语言处理任务,如文本分类、情感分析等?vLLM将是您的得力助手。作为大规模的预训练模型,它在各种NLP任务中都能展现出色的性能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
