DrHouse虚拟医生: 基于传感器数据和专家知识赋能的大模型医学诊疗推理系统 - 香港中文大学等

摘要

大型语言模型(LLMs)具有变革数字医疗的潜力,最近基于LLMs的虚拟医生的进展便是明证。然而,当前方法依赖于患者对症状的主观描述,导致误诊率增加。鉴于智能设备日常数据的价值,我们介绍了一种新型基于LLMs的多轮咨询虚拟医生系统——DrHouse,它包含三个重要贡献:

1)在诊断过程中利用智能设备的传感器数据,提高准确性和可靠性。

2)DrHouse借助不断更新的医学知识库,确保其模型始终处于诊断标准的前沿。

3)DrHouse引入了一种新颖的诊断算法,能够同时评估潜在疾病及其可能性,促进更细致、更明智的医疗评估。

通过多轮互动,DrHouse 确定下一步行动,如从智能设备获取日常数据或请求实验室测试,并逐步完善其诊断。在三个公共数据集和我们自己收集的数据集上的评估显示,DrHouse 的诊断准确率相比现有技术基线可提升高达 31.5%。一项涉及 32 名参与者的用户研究结果显示,75% 的医学专家和 91.7% 的测试对象愿意使用 DrHouse。

从AI虚拟病人到虚拟医生,参考 AIPatient:基于EHR和知识增强大模型智能体工作流的模拟患者-密歇根、斯坦福、哈佛医学院、山大、港大、医科院、北大六院等

核心速览

研究背景

  1. 研究问题:这篇文章要解决的问题是如何利用大型语言模型(LLMs)和传感器数据来提高诊断的准确性和可靠性。现有的基于LLMs的虚拟医生系统主要依赖患者的主观描述,容易受到主观感知和记忆偏差的影响,导致误诊率较高。

  2. 研究难点:该问题的研究难点包括:如何将最新的医学知识库整合到LLMs中,如何从患者的日常传感器数据中提取有用的信息,以及如何在多轮对话中综合考虑患者的症状描述和传感器数据。

  3. 相关工作:该问题的研究相关工作包括:利用LLMs进行医学问答和诊断推理的系统,如Med-PaLM 2、DISC-MedLLM和HuatuoGPT;

  4. 利用LLMs解释传感器数据的系统,如Penetrative AI和HARGPT;

  5. 基于传感器数据进行健康预测的系统,如Health-LLM和CaiTI。

研究方法

这篇论文提出了DrHouse,第一个结合LLMs、传感器数据和专家知识的医学诊断推理系统虚拟医生。具体来说,

  1. 知识库构建:DrHouse构建了两个知识库,一个是医学专家知识库,包括多轮医学对话、医学教科书和诊断指南;另一个是传感器数据知识库,包含患者日常传感器数据。

  2. 多源知识检索:DrHouse采用了基于映射的诊断指南树检索方法和自适应传感器数据检索方法。前者通过预收集的症状-疾病数据集,检索与患者症状最相关的诊断指南树;后者则根据虚拟医生的查询,检索相关的传感器数据。

  3. 知识融合:在多轮对话中,DrHouse将患者的描述、传感器数据知识和医学知识进行融合,形成综合的诊断依据。

  4. 诊断决策:DrHouse通过知识选择和候选疾病的并行检查来做出诊断决策。具体来说,首先根据患者的初始症状,检索最相关的疾病和诊断指南;然后在每轮对话中,根据新的症状和传感器数据,动态更新诊断指南和概率估计。

实验设计

  1. 数据收集:实验使用了三个公开的医疗对话数据集(DIALMED、MedDG和KaMed)和一个合成数据集。合成数据集基于这些对话数据集,并模拟了患者的传感器数据。

  2. 实验设置:实验包括模拟实验和真实世界实验。在模拟实验中,使用不同的虚拟医生与对话数据集中的症状进行多轮对话,评估其诊断性能。在真实世界实验中,招募了12名测试对象,使用他们的历史传感器数据和实际疾病类型进行多轮诊断交互。

  3. 参数配置:实验中使用了多种基础LLMs(如GPT-3.5、GPT-4和Llama-3),并进行了参数调优和消融实验,以评估不同设置下的性能。

结果与分析

  1. 总体性能:在模拟实验中,DrHouse比最好的基线方法提高了18.7%的诊断准确率;在真实世界实验中,DrHouse比最好的基线方法提高了31.5%的诊断准确率。此外,DrHouse在传感器数据利用和遵循诊断指南方面的得分分别比最好的基线方法提高了38.8%和10.7%。

  2. 疾病分类性能:在DialMed数据集上,DrHouse在呼吸系统疾病和胃肠道疾病的诊断准确率分别比基线方法提高了36.8%和24.5%,但在皮肤病的诊断准确率方面表现较差。

  3. 用户反馈:在用户研究中,83.4%的测试对象对DrHouse的诊断表示满意,91.7%的测试对象愿意在未来使用DrHouse进行诊断。医学专家认为DrHouse的诊断与标准诊断程序一致,并且有助于减轻他们的工作负担。

总体结论

这篇论文提出了DrHouse,第一个结合LLMs、传感器数据和专家知识的诊断推理系统。通过多轮对话和知识融合,DrHouse显著提高了诊断的准确性和可靠性。实验结果和用户反馈表明,DrHouse具有很高的市场潜力,能够为用户提供可靠和满意的医疗诊断服务。未来的工作将包括扩展诊断指南的范围、整合更多模态的传感器数据以及优化响应延迟。

论文评价

优点与创新

  1. 多源知识检索:DrHouse首次提出了结合患者传感器数据和医学专家知识的多源知识检索方法,显著提高了诊断的准确性和可靠性。

  2. 实时更新医学知识:DrHouse利用最新的医学诊断指南,主动询问患者相关症状,确保模型始终处于诊断标准的前沿。

  3. 新颖的诊断算法:DrHouse引入了一种新的诊断算法,能够同时评估潜在疾病及其可能性,促进了更细致和全面的医学评估。

  4. 多轮交互:通过多轮交互,DrHouse能够确定下一步行动,如访问智能设备的日常数据或请求实验室测试,并逐步完善其诊断。

  5. 用户研究结果:在32名参与者的用户研究中,75%的医疗专家和91.7%的测试对象愿意使用DrHouse。

  6. 高诊断准确性:在合成数据集和真实世界数据集上的评估显示,DrHouse的诊断准确性比最先进的基线方法高出31.5%。

不足与反思

  1. 额外专家知识的整合:DrHouse需要检索诊断指南树以启动多轮医疗咨询,这一过程受到DrHouse中包含的诊断指南数量和症状-疾病数据集中案例数量的影响。未来计划包括纳入更多诊断指南以支持更广泛的疾病范围。

  2. 传感器数据整合:DrHouse目前专注于整合来自可穿戴设备(如智能手表)的传感器数据。未来方向包括将传感器数据从其他模态(如图像和IMU数据)整合到诊断决策中,并增强系统验证传感器数据可靠性的能力。

  3. 响应延迟:DrHouse的基础大型语言模型部署在云服务器上,API调用的延迟不稳定。未来工作包括在移动设备上部署DrHouse的基础大型语言模型或使用边缘-云协作以减少延迟。

  4. 诊断中的主观因素:尽管大多数医疗专家认为DrHouse的诊断与标准诊断程序一致,但有35%的专家认为DrHouse的诊断风格与他们自己的不一致。未来方向包括将不同的诊断风格整合到DrHouse中。

  5. 其他医学大型语言模型作为基础模型:未来工作包括探索其他现有的医学大型语言模型作为DrHouse的基础模型。

关键问题及回答

问题1:DrHouse在多轮对话中如何整合患者的描述、传感器数据知识和医学知识?

  1. 运行时提示模板:DrHouse使用模板化的运行时提示,将患者的描述、传感器数据、医学知识和诊断指南树输入到LLMs中。具体来说,提示包含四个部分:患者的当前症状描述、传感器数据知识、医学知识和诊断指南树。

  2. 多源知识检索:在每一轮对话中,DrHouse首先检索与患者描述最相似的前k个病例,获取相应的诊断指南树。然后,根据患者的描述检索传感器数据知识。

  3. 知识融合:DrHouse将患者的描述、传感器数据知识和医学知识融合在一起,形成综合的诊断决策。具体来说,使用模板化的运行时提示,将患者的描述、传感器数据、医学知识和诊断指南树输入到LLMs中,生成诊断结果。

  4. 诊断决策:DrHouse通过知识选择和候选疾病的并行检查来生成可解释的诊断结果。首先根据患者的初步描述检索前k个最相关的疾病,然后根据诊断指南树逐步确认疾病的可能性,并结合传感器数据的不确定性来做出最终的诊断决策。

问题2:DrHouse在诊断过程中如何处理传感器数据的不确定性?

  1. 不确定性评分:DrHouse首先检查传感器数据的不确定性,为每个样本分配一个不确定性评分。如果不确定性高,虚拟医生会请求患者进行实验室检测,而不是仅依赖传感器数据。

  2. 窗口概率密度函数(PDF):DrHouse使用基于窗口的PDF方法来计算每个传感器数据记录的平均值和方差,从而避免在运动等情况下对传感器值的误解。例如,运动中较高的心率如果整体平均值保持稳定,则不会被误认为是异常值。

  3. 错误传感器读数检测:DrHouse还能识别错误的传感器读数,如异常的零值,并通过不确定性评分来进一步处理这些情况。

问题3:DrHouse在用户研究中的表现如何?

  1. 测试对象反馈:在用户研究中,12名测试对象中有83.4%对DrHouse的诊断表示满意,91.7%的测试对象愿意在未来使用DrHouse进行诊断。大多数参与者认为DrHouse的诊断结果可靠,并且比传统医院就诊更方便。

  2. 医学专家反馈:20名医学专家参与了用户研究,其中80%的专家认为DrHouse的诊断与标准诊断程序一致或高度一致,80%的专家认为DrHouse能正确诊断疾病。85%的专家认为DrHouse对他们的诊断有帮助,75%的专家愿意在诊断过程中使用DrHouse。90%的专家认为DrHouse的设计新颖且实用。

  3. 市场潜力:用户研究和医学专家的反馈表明,DrHouse具有很高的市场潜力,可以作为医生的预筛查工具,提高诊断效率并减少医生的工作负担。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值