给MCP加上RAG,Agent准确率起飞?

嘿,大家好!这里是一个专注于前沿AI和智能体的频道~

昨天,arxiv挂了一篇RAG-MCP的论文,忍不住唠叨几句。

img

数据来看,他对Accuracy的提升非常明显。

img

但本质上,这个工作没有太多的新内容,只是碰瓷MCP,且对大多数读者来说没有太大意义。

鉴于还是有很多小伙伴不是很清楚,MCP、MCP Server是什么?

为什么要有MCP?

首先,我们需要知道的是,大模型的输入只有prompt。

所以,无论是function call,又或者是MCP Server。他们做的都是定义了一个工具描述信息,最终都会被以某种方式填充到prompt里。

那为什么有了function call还要有MCP协议呢,问题出在这个工具描述定义这里,每家大模型API都是让你传一个Json进某一个指定字段。

但是这个Json定义的格式,它不一样,这就带来了一些迁移适配成本问题。

MCP协议的作用是,反过来,模型方主动去适配一个标准的MCP定义格式。 所有的Server(也就是工具)都遵从MCP格式的定义来封装你的工具。这样相同的工具,对不同的模型厂商就打通了。

因为MCP,导致现在工具封装统一了,所以现在像cursor、chatwise等,都开发了相应的功能,用户可以轻松配置外部定义好的MCP Server,进而使用它们的工具。

为什么MCP-RAG对大多数人没有意义?

很多的用户都是基于现成的MCP-Client来使用MCP,而工具召回,是MCP-Client做的事情,它通过从候选集合中找到一部分的工具来进入大模型的Prompt。

图片

其次,工具召回其实属于一个非常基础的工作,只是套了一个MCP的名词,就可以作为一个新的研究放出来,进而被自媒体夸大。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### RAG Agent 实现与 MCP 框架组件 RAG(Retrieval-Augmented Generation)是一种结合检索增强生成的方法,能够有效解决传统大语言模型的知识时效性和准确性问题[^3]。通过引入外部知识库或文档作为输入的一部分,RAG使得模型能够在推理过程中动态获取最新信息。 在实际实现中,可以采用如下方式来设计基于MCP(Multi-Component Pipeline)框架的RAG Agent: #### 架构概述 1. **检索模块** 使用向量数据库或其他高效检索引擎,在大量结构化或非结构化的数据集中快速找到最相关的片段。这些片段随后被传递给后续的大语言模型用于上下文理解[^4]。 2. **Agent 控制器** 这部分负责任务分解和工具调用逻辑的设计。具体来说,它会依据用户的请求制定计划,并决定何时以及如何利用其他辅助功能(比如特定API接口或者预训练好的子模型)。例如,“订票”这一操作可能涉及多个阶段——查询航班时间表、比较价格选项直至最终确认预订细节[^2]。 3. **记忆机制** 记忆单元用来保存之前的交流记录以便维持长时间跨度内的对话一致性。这对于某些需要反复澄清需求的应用场合尤为重要,如客户服务聊天机器人等场景下保持良好的用户体验至关重要[^4]。 #### 技术栈推荐 为了搭建这样一个复杂的系统架构,可以选择一些流行的开源技术和平台来进行集成开发工作: - **LangChain**: 提供了一套完整的链路支持从原始资料提取到最终响应呈现整个过程中的各个环节衔接顺畅; - **FAISS/ChromaDB**: 高效矢量化存储方案帮助加速近似最近邻搜索速度从而提升整体性能表现; - **DeepSpeed/Megatron-LM**: 如果考虑自行微调基础LLMs,则上述两个项目提供了优化后的分布式训练算法降低资源消耗成本的同时加快收敛速率。 下面给出一段简单的Python伪代码展示基本思路: ```python from langchain import PromptTemplate, LLMChain import faiss # 或 chromadb 等替代品 class RagBasedAgent: def __init__(self, llm_model, db_index_path): self.llm = llm_model self.db_index = faiss.read_index(db_index_path) def query_relevant_docs(self, question): vectorized_question = ... # 将问题转化为嵌入表示形式 distances, indices = self.db_index.search(vectorized_question, k=5) relevant_documents = [...] # 根据索引取出对应文档内容 return "\n".join(relevant_documents) def generate_answer(self, user_input): context_info = self.query_relevant_docs(user_input) template = """Given the following extracted parts of a long document and a question, provide an accurate answer. Context Information:\n{context}\n\nQuestion:{question}""" prompt_template = PromptTemplate(template=template, input_variables=["context", "question"]) chain = LLMChain(prompt=prompt_template, llm=self.llm) response = chain.run({"context": context_info, "question": user_input}) return response if __name__ == "__main__": model_instance = load_pretrained_llm() # 加载已有的大型语言模型实例 agent = RagBasedAgent(model_instance, "./data/faiss_index") while True: inp = input("Ask me anything:") ans = agent.generate_answer(inp) print(f"Answer is {ans}") ``` 问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值